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Foreword to First Edition

This book contains an exposition of the results of William Thurston in

the theory of surfaces (measured foliations, natural compactification of Te-

ichmüller space, and classification of surface diffeomorphisms). Our scope is

essentially that outlined in the research announcements of Thurston, and in

the notes of his Princeton course, as written up by M. Handel and W. Floyd.

A part of this work, notably the classification of curves and of measured

foliations, is an elaboration of expositions made in the Seminaire d’Orsay in

1976–1977. But we were not able to write the proofs for the remaining por-

tions of the theory until much later. In the Spring of 1978, at Plans-Sur-Bex,

Thurston explained to us how to see the projectification of the space of mea-

sured foliations as the boundary of Teichmüller space.

The first exposé enumerates the principal results, the proofs of which fol-

low in exposés 2 through 13. The last two exposés present work somewhat

marginal to the theme of the classification of surface diffeomorphisms. Ex-

posé 14 (orally presented by D. Fried and D. Sullivan) discusses nonsingular

closed 1-forms on 3-dimensional manifolds, following Thurston, in particu-

lar on the fibres on S1 for which the monodromy diffeomorphism is pseudo-

Anosov. Exposé 15 (orally given by A. Marin) gives a finite presentation of

the mapping class group following Hatcher and Thurston.

The seminar consisted also of exposés of an analytical nature (holomor-

phic quadratic differentials, quasi-conformal mappings) given by W. Abikoff,

L. Bers, and J. Hubbard. In the end, the two points of view were found to be

more independent of each other than was initially believed. The analytic point

of view is the subject of a separate text written by W. Abikoff (see [Abi72]).

We thank all of the active participants in the seminar; all have contributed

assistance in various sections. A. Douady, who, after the oral presentations,

helped us to capture the content of the lectures; M. Shub, who discussed with

us the ergodic point of view; D. Sullivan, who besides giving much advice

and encouragement, strove to make us understand how the image of a curve

under iteration of a pseudo-Anosov diffeomorphism “finishes” the foliation

of the surface. (It took many more months to fully understand this “mixing”.)

Finally, we thank Mme. B. Barbichou and S. Berberi for the care which
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they took in typing the manuscript and producing the illustrations.

Translator’s notes

I would like to thank Dale Rolfsen, for providing support, encouragement

and many fruitful discussions, the Mathematics departments at Berkeley and

McGill, for providing library and computer facilities during visits in 1990 and

1996 respectively, and Elisabeth Kim, who read early drafts of some of the

chapters and provided corrections and helpful suggestions.

This book was typeset using a modified LATEX 2� report style. Most figures

were produced using xfig, free software written by Supoj Sutanthavibul,

Ken Yap, Brian Smith, and Micah Beck, among others. The resulting figures

were converted into encapsulated PostScript using transfig and then fur-

ther post-processed. The drafts were printed using dvips.

Thanks to: Mary Ann Lacey, Ronald Ferguson, Kevin Pilgrim, Jonathan

Walden, Frances Fry, Bill Casselman, Curt McMullen.

Djun Kim,

Vancouver, B.C.

djun@math.ubc.ca



D
R

A
FT

30
 M

ay
 2

00
2
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Abstract

This book is a an exposition of Thurston’s theory of surfaces (measured

foliations, compactification of Teichmüller space and classifications of diffeo-

morphisms).

The mathematical content is roughly the following.

For a surface M (let’s say closed, orientable, of genus g > 1), one definesS as the set of isotopy classes of simple closed curves in M . For �; � 2 S ,

one denotes by i(�; �) the minimum number of geometric intersection points

of �0 with �0, where �0 (resp. �0) is a simple curve in the class � (resp. �).

This induces a map i� : S R�!S+ which turns out to be injective. In fact, if one

projectivizes RS+ n 0, i� induces an injection i� : S P�!(RS+) which endows S
with a nontrivial topology. Here RS+ is provided with the weak topology ( =

product topology). Two curves �; � 2 S are “near to each other” in P (RS+)
if, up to a multiple, they are made up of more or less the same strands going

more or less the same direction. This has nothing to do with homotopy theory.

The limits of curves are naturally interpreted as projective classes of “mea-

sured foliations”, which means foliations with an “invariant” transverse dis-

tance, having a certain kinds of singularities (well-known in the theory of

quadratic differentials, or in smectic liquid crystals). The space of measured

foliations considered in RS+ (or in P (RS+)) is denoted by MF (resp. PMF ).

One shows that: MF ' R6g�6: PMF ' S6g�7:
In P (RS+), PMF and the Teichmüller space T (M) glue together into a 6g � 6
dimensional disk: �T (M) = T (M) [ PMF(M) = D6g�6:

The group Di�(M) acts continuously on this compactification of T (this is

hence “a natural compactification”).

Hence any � 2 Di�(M) has a fixed point in �T (M) (Brouwer) and the

analysis of this fixed point shows that (up to isotopy) each � is either a hy-

perbolic isometry, or “Anosov-like” (the word is “pseudo-Anosov”), or else

“reducible”.
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Pseudo-Anosov diffeomorphisms minimize the topological entropy in their

isotopy class. Also two pseudo-Anosov’s which are isotopic are actually con-

jugate.

Every diffeomorphism � : M !M has a (finite) spectrum defined in terms

of the length of �n�0 raised to the power 1=n. A pseudo-Anosov is character-

ized by the fact that the spectrum is reduced to a single value � > 1.

There is a good method to produce many pseudo-Anosov’s out of combi-

nations of Dehn twists which is explained in exposé 13.

The last two chapters are of a somewhat different character: exposé 14 is

about closed non-singular 1-forms on 3-manifolds, and exposé 15 about the

Hatcher-Thurston theorem on finite presentability of �0Di�(M).
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Chapter 1
Collected theorems of Thurston on Surfaces

by V. Poénaru

1.1 Introduction

Thurston’s theory ([Thu67], see also [Thu], [Poen78]) is concerned with the

following three questions:

I. Describe “all” closed curves without a double point (not

necessarily connected) on a surface, up to isotopy.

II. Describe “all” diffeomorphisms of a surface, up to isotopy.

III. Give a natural (with respect to the action of diffeomor-

phisms) boundary for Teichmüller space.

For a closed surface, there always exists a Riemannian metric of constant

curvature [Gau27]. The table below (Table 1.1) summarizes the possibilities

and at the same time establishes a parallel between the geometric and the

topological properties.

Most of Thurston’s theorems hold for any compact surface, but in the fol-

lowing, we restrict ourselves to orientable surfaces which are closed, or which

have non-empty boundary.

1.2 The space S of curves

Let M be a compact, connected, orientable surface. We write S(M) = S for

the set of isotopy classes of simple, closed, connected curves of M which are

not homotopic to zero or homotopic to a boundary component of M .

1
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Surface: K (curvature):
� (Euler

characteristic): Remarks:S2, RP 2 K = 1
(Elliptic geometry) � > 0 �1 is finite, �2 6= 0.T 2, K2

(Klein bottle)

K = 0
(Euclidean
geometry) � = 0 These are K(�; 1)’s and

their universal covering
space is R2.

genus > 1 K = �1
(Hyperbolic
geometry) � < 0

Table 1.1: The three possible geometries on surfaces.

Remarks.

(1) The elements of S are not oriented.

(2) Since two simple closed curves which are homotopic are also isotopic

[Eps66a], we may replace “isotopy classes” in the above definition with “ho-

motopy classes”.

Consider the symmetric mapi : S � S ! Z+ = f0; 1; 2; : : : g
defined in the following fashion: i(�; �) is the minimum number of intersec-

tions of a representative for �with a representative for �. This is the geometricgeometric intersection

number
intersection number (as opposed to the algebraic intersection number).algebraic intersection

number

Example. On the torus T 2, we choose two oriented generators x and y. Then

all elements of S may be represented by 
(a; b) = ax+ by, where a; b 2 Z and(a; b) = 1; in S , we have 
(a; b) = 
(�a;�b). The following formula is easy to

verify: i (
(a; b); 
(
; d)) = �����det a b
 d !�����
Lemma 1.1
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(1.) If � 2 S , there is a � 2 S such that i(�; �) 6= 0.

(2.) If �1 6= �2 in S , there is a � 2 S such that i(�1; �) = 0 6= i(�2; �).
The proof is given in chapter 2.3.

1.2.1 The space of functionals.

We may consider the set RS+ of functions from S to the non-negative reals,

with the weak topology. The usual multiplication by the positive reals de-

fines rays in RS+. The set of these is the projective space P (RS+); it is given the rays

quotient topology. We have the natural mappingsS i��! RS+ n 0 ��! P (RS+)
where i� is defined by i�(�)(�) = i(�; �). By (1) of lemma 1.1, i�(S) does not

contain 0; (2) assures the injectivity of � Æ i�.
Consider the completion of S , denoted S , which is the closure of � Æ i�(S)

in P (RS+). The elements of S are represented by sequences f(tn; �n)g, tn >0, �n 2 S , such that for all � in S , the sequence of real numbers tni(�n; �)
converges.

Thus, within P (RS+), the set S is topologically non-trivial. Intuitively, we

may give a meaning to the notion “two curves 
; 
0 are close to each other”.

This ‘proximity’ has nothing to do with the respective homotopy classes of the

curves, but with the fact that, up to a multiple, in every region of the surface,
 and 
0 are more-or-less made up of the same number of strands, going in

more-or-less the same direction. All of this will be discussed in greater detail

in Chapter 3.4.

We need to introduce also the space S 0 of isotopy classes of simple, closed,

not necessarily connected curves onM , whose every component “belongs” toS . But two distinct components of the same curve are allowed to be isotopic

to each other, so that we may consider a scalar multiplication: for an integern > 0 and 
 2 S 0, n
 is represented by n parallel curves.

As before, we define i : S 0 � S ! Z+, and obtain the diagramS 0 i��! RS+ n 0 ��! P (RS+)
Clearly, i� respects multiplication by scalars, hence �i� is not injective on S 0.
But one may easily show that �i� admits S as closure (see Chapter 3.4). In the

following, we denote by R+ � S the cone on i�(S) in RS+.
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4 (FLP — Exposé 1: Draft – RCSversion 1.5) May 30, 2002

{ε

{ε

Figure 1.1: p-saddles, for p = 3, p = 4.

Theorem 1.2 If M is a closed orientable surface of genus g > 1, then S is homeo-

morphic to S6g�7. (This is proved in chapter 3.4.)

Let M2g;b := #g (S1 � S1) � Sb D2. If �(M2g;b) < 0, then S(M2g;b) is homeo-

morphic with S6g+2b�7 (see Chapter 10.6). Lastly, S(T 2) ' S1, S(D2) = S(S2) =S1 � [0; 1℄ = ;.

1.3 Measured Foliations

For simplicity, M will be closed. A measured foliation on M is a foliation Fmeasured foliation

with singularities (of the type of a holomorphic quadratic differential zp�2dz2; p =3; 4; : : : ) together with a transverse measure invariant under holonomy. In the

neighbourhood of a non-singular point, there exists a chart � : U ! R2x;y such

that ��1(y = 
onstant) consists of the leaves of FjU . If Ui \ Uj is non-empty,

there exist transition functions �ij of the form�ij(x; y) = (hij(x; y); 
ij � y)
where 
ij is a constant. In this chart, the transverse measure is given by jdyj.
Remark. The foliations which admit transition functions of the form (f(x; y); 
+y) are those which are defined by a closed 1-form !; away from singularities,y is a local primitive for !.

The singularities of F are p-saddles (p � 3) as in figure 1.1.

If 
 is a simple closed curve on M , we call
R
 F the total variation of thetotal variation
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Figure 1.2:

coordinate y of p 2 
 as p traverses 
. For � 2 S , defineI(F ; �) := inf
2� Z
 F :
One says that F1 and F2 are equivalent in the sense of Whitehead if the equivalent in the sense

of Whitehead
one may be transformed to the other by isotopies and elementary deforma-

tions of the type suggested by figure 1.2.

(Observe that these deformations permit the transport of the transverse

measure.) Denote by MF the set of equivalence classes. DefineI� : MF ! RS+
by I�(F)(�) = I(F ; �):
One says that F1 and F2 are m-equivalent (or equivalent in the sense of m-equivalent

equivalent in the sense

of Schwartz
Schwartz) if I�(F1) = I�(F2). Schwartz equivalence is an immediate conse-

quence of Whitehead equivalence.

Theorem 1.3 The map I� injects MF into RS+; I�(MF) [ 0 = R+ � S , and ifg > 1, this set is homeomorphic with R6g�g. In particular, Schwartz equivalence is

the same thing as Whitehead equivalence.

The proof of this theorem is dealt with in chapters 4.3 and 5.3.2. On the

other hand, since I�(MF) misses 0, the theorem says that in P (RS+) we haveS = � Æ I�(MF). This gives a nice geometric representation of the functionals

in R+ � S .
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1.4 Teichmüller Space

We will consider a surfaceM with �(M) < 0. Consider the spaceH of all met-

rics on M with constant curvature K = �1, such that every component of the

boundary of M is a geodesic. Let Di�0(M) be the group of diffeomorphisms

isotopic to the identity, with the C1 topology. As we shall see later, this acts

freely and continuously on H. The orbit space under this action, equipped

with the quotient topology, we will call the Teichmüller space T (M) = T . IfTeich

müller space M is orientable, there is another definition in terms of complex structures onM . The equivalence of the two definitions is a consequence of the uniformiza-

tion theorem [Wey55].

Remarks. Consider a fixed M , together with another surface X� = X with

a hyperbolic metric �. If � : M ! X is a diffeomorphism, the pair (X;�) is

called a Teichmüller surface.Teich

müller surface
Two Teichmüller surfaces (X;�); (X 0; �0) are said to be equivalent if thereequivalent

is an isometry f : X ! X 0 such that � and f Æ �0 are isotopic.

It is convenient to identify the points of T with equivalence classes of

Teichmüller surfaces.

We remark here that two diffeomorphisms ofM are homotopic if and only

if they are isotopic (see [Eps66a]).

If M is closed, of genus g > 1, a classical theorem of Teichmüller theory

asserts that T (M) ' R6g�6:
This result, due to Fricke and Klein, will be re-proved in chapter 6.

Further, we have T (M2g;b) ' R6g�6+2b:
For all � 2 T and � 2 S , we define`(�; �) := inf
2�(�(
))

where �(
) designates the length of 
 computed in the metric prescribed up

to isotopy on M .

The metric being fixed, the infimum is attained for a unique geodesic.

From the above formula, we obtain the map`� : T ! RS+



D
R

A
FT

30
 M

ay
 2

00
2
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It can be easily seen that the image of the map misses I�(MF)[ 0. The group�0(Di�(M)) acts on Teichmüller space as it does on S , thus on RS+; the map `�
is clearly equivariant.

In chapter 6, we prove the theorem below.

Theorem 1.4 The map `� is a homeomorphism onto its image.

It is thus possible to put a natural topology on T [ S ; by the above, we

consider the topological space `�(T ) [ I�(MF), in which the rays in I�(MF)
are identified to points, taken with the quotient topology.

In chapter 7, we prove (for the case where M has no boundary) the fol-

lowing:

Theorem 1.5

1. The topological space T [ S is homeomorphic to D6g�6, if M is closed, of

genus g > 1; it is homeomorphic to D6g�g+2b if M has Euler characteristic < 0 andb boundary components.

2. The canonical map T [ S ! P (RS+) is an immersion.

The space T [S , notated T , is the Thurston compactification of the Teich- Thurston compactifi-

cation
müller space. It follows immediately from the definitions that for any diffeo-

morphism � of M , the natural action of � on T is continuous.

If � is a diffeomorphism of M , and [�℄ designates the homeomorphism

induced by � on T , then [�℄ has a fixed point, by Brouwer’s theorem.

(i) If [�℄ has a fixed point in T , then � is isotopic to an isometry �0 in a

hyperbolic metric; in particular, �0 is periodic.

(ii) If [�℄ fixes a point in S, there is a foliation F such that �(F) is White-

head equivalent to �F , � 2 R+, where �F has the same underlying foliation

as F , with a transverse measure � times that for F .

This cursory analysis will be made more precise in what follows.

1.5 Pseudo-Anosov Diffeomorphisms

We begin with a very elementary example. Let � 2 Di�+(T 2). Up to isotopy,� is in SL2(Z). There are three distinct possibilities for the eigenvalues �1 and�2 of �, as follows:
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(a) �1 and �2 are complex, �1 = ��2, �1 6= �2, j�1j = j�2j = 1. In this case, �
is of finite order.

(b) �1 = �2 = 1; respectively, �1 = �2 = �1. Up to a change of coordinates,� =  1 a0 1 ! ; respectively, � =  1 �a0 1 ! ;
that is, � is a “Dehn twist”. In either case, � leaves invariant a simple curve.Dehn twist

(c) �1 and �2 are distinct irrationals. Then � is an Anosov diffeomorphism.Anosov

This analysis is generalized by Thurston to any compact surface.

Theorem 1.6 Any diffeomorphism � on M is isotopic to a diffeomorphism �0 satis-

fying one of the following three conditions:

(i) �0 fixes an element of T and is of finite order.

(ii) �0 is “reducible”, in the sense that it preserves a simple curve (representing an

element of S 0); in this case, one pursues the analysis of �0 by cutting M open

along this curve.

(iii) There exists � > 1 and two transverse measured foliations FS and FU such

that �0(FS) = 1�FS ;�0(FU ) = �FU ;
These equalities indicate that the underlying foliations are equal.

Apart from the obvious case, namely whenFS andFU are transverse, this

says that their singularities are the same, and there exists a neighbourhood of

each singularity which is analogous to that in Figure 1.3. A diffeomorphism

which satisfies condition (iii) is called pseudo-Anosov.pseudo-Anosov

Theorem 1.6 is proved in chapter 8. In order to later use this theorem for an

efficient induction, we need to extend the theory to the case with boundary.

This is realized in chapter 10.6.

In chapter 11, we show that, for a pseudo-Anosov �, FS and FU represent

the only fixed points of [�℄ in T , and the two pseudo-Anosov homotopies are

conjugate by a diffeomorphism isotopic to the identity.
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FUFS
Figure 1.3: Pseudo-Anosov Singularities

The key to these theorems is the following “mixing” property which the

pseudo-Anosov diffeomorphism � possesses: for all �; � 2 S ,limn!1 i(�n�; �)�n = I(FS ; �)I(FU ; �)
1.5.1 Spectral properties of pseudo-Anosov diffeomorphisms.

For � 2 T and � 2 S , we defined in section 1.4 the positive number `(�; �).
Diffeomorphisms take proper values in the following sense:

Theorem 1.7 Let � 2 Di�(M2). There exists a finite family of algebraic integers�1; : : : ; �k � 1 such that, for every � 2 S , there exists �j satisfying: for all � 2 T ,limn!1 `(�; �n�)1=n = �j . Furthermore, � is pseudo-Anosov if and only if k = 1
and �1 > 1; in this case �1 = �. (See chapters 8 and 10.6).

1.5.2 Entropy.

On a compact metric space X with a continuous map f : X ! X , we may

define the topological entropy. (See chapter 9.5). If � is a pseudo-Anosov topological entropy

diffeomorphism, one proves that h(�) = log(�). Moreover, � possesses an

obvious invariant measure and h(�) is its metric entropy [Sin76b]. metric entropy

Theorem 1.8 A pseudo-Anosov diffeomorphism minimizes the topological entropy

in its isotopy class.
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3
e

e

e
2

1

Figure 1.4: The torus T 2
The list of Thurston’s results is much longer, but we end this overview

here to come to the heart of the matter.

1.6 The case of the torus T 2
This case is particularly simple and is treated separately. On the torus T 2,

consider the three elements e1; e2; e3 in S(T 2), shown in figure 1.4. Let these

be provisionally oriented.

Let x1 and x2 be the canonical generators e1 and e2 given the orientations

shown in figure 1.4.

If 
 is a simple oriented curve, 
 = mx1 + nx2, we findi(e1; 
) = jnj; i(e2; 
) = jmj; i(e3; 
) = jn�mj:
These three numbers determine 
 in S , but the first two are not sufficient.

They form a “degenerate triangle”, in the sense that any one of them is equal

to the sum of the other two.

We now consider the standard simplex with barycentric coordinates X1,X2, X3, (where Xi � 0,
PXi = 1). This decomposes into the four regions

indicated in figure 1.5.

Let (� r) be the domain where the triangle inequality holds; the bound-

ary �(� r) corresponds to degenerate triangles. The standard simplex being

regarded in R3+, by 
one(�(� r)) we mean the cone in the half-line from the

center 0 supported on �(� r).
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triangle inequalities X1 � X2 +X3X2 � X1 +X3 X3 � X1 +X2X2 X3

Figure 1.5:

For every 
 2 S , we associate the numbersxj := i(ej ; 
)Pj i(ej ; 
) ; j = 1; 2; 3;
a simple calculation shows that we can thus identify with S the set of rational

points of �(� r).
Lemma 1.9 Let � 2 S . There exists a continuous function�� : 
one(�(� r))! R+;
homogeneous of degree 1 (for multiplication by positive scalars), such that, for all� 2 S , i(�; �) = �� (i(�; e1); i(�; e2); i(�; e2)) :
Proof. We give an explicit construction. Suppose that � is represented bymx1+nx2, n;m 2 Z, (m;n) = 1. (The only ambiguity in this is that�mx1�nx2
also corresponds to �.) On the surface of the cone X3 = X1 +X2, we have��(X1;X2;X3) = �����det X2 �X1m n !�����
On the other two faces, we have��(X1;X2;X3) = �����det X2 X1m n !�����
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At the intersection of these faces, these formulas show that �� has the stated

property.

Remark. �� is piecewise linear, a property which we may recover from the

other “explicit” formulas of the theory.

Consider now a sequence (�n; �n) with �n 2 R+, �n 2 S , such that, for

all � 2 S , the sequence �ni(�n; �) converges. Denote by lim(�n; �n) the func-

tional lim(�n; �n)(�) := lim�ni(�n; �):
Since �� is homogeneous, we havelim(�n; �n)(�) = ��(lim(�n; �n)(e1); lim(�n; �n)(e2); lim(�n; �n)(e3)):
This implies that the bijection of R+ � S , regarded as part of RS+, onto the

rational rays of 
one(�(� r)) prolongs to a homogeneous homomorphism:R+ � S ' 
one(�(� r)) ' R2
Thus, in P (RS+), we have S ' S1.

Consider a measured foliation F on T 2. One can show that F has no sin-

gularities and that it is transversely orientable (this is a consequence of a sim-

ple Euler-Poincaréformula); with this measured foliation we identify a closed

non-singular 1-form. This form is then isotopic to a unique linear form (a 1-

form with constant coefficients in the canonical coordinates on T 2) [Ste69].

If ! is linear, every curve 
 = mx1 + nx2 is transverse to !, or else con-

tained in a leaf; thus ����Z
 !����2 = I(!; 
);! is determined up to sign by I(!; e1), I(!; e2) I(!; e2). Lemma 1.10 is now

clear:

Lemma 1.10 Let F be a measured foliation on T 2. Then:

1. I(F ; e1), I(F ; e2), I(F ; e3) form a degenerate triangle.
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2. If � 2 S , then I(F ; �) = ��(I(F ; e1); I(F ; e2); I(F ; e3));
where �� is the function of lemma 1.9.

The first point is clear from figure 1.6

1e

e
e

3
2

I(F ; e3) =I(F ; e1) + I(F ; e2) I(F ; e2) =I(F ; e1) + I(F ; e3) I(F ; e1) =I(F ; e2)+I(F ; e3)
Figure 1.6: Proof of lemma 1.10–(1)

As a consequence, in P (RS+), we have �I�(MF) = S .

In section 1.4, we defined the Teichmüller space in the context of � < 0.

For T 2, one may give an analogous definition, by considering the flat metric

(K = 0) such that the area of T 2 = 1. (This normalization condition is useless

in the hyperbolic case, where the form of an object determines its volume.)

Remark 1. Instead of this normalization, one may work with a metric which

is flat up to a positive scalar.

On the other hand, if T 2 is given a complex structure, its universal cover-

ing fT 2 is isomorphic to C and the group of automorphisms of C , z 7! �z + �,�; � 2 C , coincides with the group of orientation preserving maps of R2 pre-

serving the euclidean metric up to a scalar. From this, one easily deduces the

equivalence of our definition of T with the classical definition: “the set of

complex marked structures on T 2, up to isotopy.”

Remark 2. A flat structure on T 2 has an underlying affine structure. If we fix

two generators e1; e2, for �1(T 2), the affine structure underlying the metric �
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is determined in the following way: all given geodesics of the class of ei are

parallel closed geodesics; thus the numbersdist( ��0 ),dist( �0�00 ) 2 R+
correspond to three geodesics of the system ei. It is easy to see that all their

affine structures on T 2 are isotopic to each other. Thus we may always repre-

sent an element of T by a flat metric � whose underlying affine structure is

the canonical structure (this choice will always be made in the following.) In

other words, the usual straight lines are the geodesics for �.

To � 2 T , we may associate (X1;X2;X3), Xj = �(ej)=Pk �(ek), where�(ej) is the length of the geodesic ej in the metric �.

Lemma 1.11 The map above is a homeomorphism T ! int(� r).
Proof. It is clear that (X1;X2;X3) satisfy the triangle inequality(s). Let � be a

triangle in R2; every assignment of lengths to the sides satisfying the triangle

inequality determines on R2 a flat metric compatible with the affine structure;

this is invariant under the group of translations, hence induces a metric on T 2.

This shows surjectivity. For injectivity, we note that two flat metrics with stan-

dard affine structures giving the same lengths to the sides of � are identical.

The topology is left for the reader.

In other words, the compositionT `��! RS+ proj:�! R(e1;e2;e3)+
is a homeomorphism of T onto its image. To see that `� is a homeomorphism

onto its image, note that the length of a given line segment depends continu-

ously on the lengths assigned to e1; e2; e3 (classical trigonometry!)

We have: `�(T )\ I�(MF) = ;
Indeed, if ! is a differential form, there exists a sequence 
n of simple closed

curves such that
R
 ! ! 0; if �n denotes the class of 
n in S , we have I�(!)(�n)!0, while for a given metric the lengths of the closed geodesics do not approach

zero.

To prove the analogue of theorem 1.4 for the torus T 2, it remains to prove

the following lemma.
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e
1

e
3

e
2

Figure 1.7:

Lemma 1.12 Let �n be a sequence of flat metrics (normalized to the canonical affine

structure), �n a sequence of positive reals, and ! a linear form. Suppose that, forj = 1; 2; 3; �n�n(ej)! �����Zej !�����
Then for all closed geodesics �, �n�n(�)! ����Z� !����
Proof.

Let �0n denote the metric �n�n. We treat the case where ! is on the faceX3 = X1 +X2 of 
one(�(� r)) (figure 1.7) and
Rei ! 6= 0 for i = 1; 2.

Orient ej ; j = 1; 2; 3, so that
Rej ! � 0. Now let �n be the magnitude of the

angle between e1 and e2 in the metric �0n.

We have[�0n(e3)℄2 = [�0n(e1)℄2 + [�0n(e2)℄2 + 2�0n(e1)�0n(e2) 
os �n:
The hypothesis then implies that 
os �n tends to 1. If � is a linear segment,� = a1e1 + a2e3, a1; a2 2 R, we have[�0n(�)℄2 = a21[�0n(e1)℄2 + a22[�0n(e2)℄2 + 2a1a2�0n(e1)�0n(e2) 
os �n:
Thus, [�0n(�)℄2 ! �a1 Ze1 ! + a2 Ze2 !�2 = �Z� !�2
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On T 2 the analysis of theorem 1.6 is trivial. Theorem 1.7 reduces in the

case of the torus to a spectral property well known in linear algebra.
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Chapter 2
Some highlights of the theory of surface
diffeomorphisms

2.1 The space of functionals

Let M2 be a compact, connected manifold of dimension 2. I will consider the

group of diffeomorphisms of M2, denoted by Di�(M2). If A � M2, I will

denote by G(M;A) the space of homotopy equivalences M f�!M , such thatf jA = id, with the topology of uniform convergence.

Theorem 2.1 (Smale) Di�(D2; rel �D2) is contractible ( Di�(D2; rel �D2) ' �).

For a proof, see [Cer68], [Sma59].

Theorem 2.2 See [Cer68]. The following natural inclusions are homotopy equiva-

lences: O(3) ,! Di� S2 ,! G(S2)SO(3) ,! Di� P 2 ,! G(P 2)
In the usual situation, M is a K(�1; 1); consider � 2M and the fibrationG(M; �) ,! G(M)??yev(�)M

By standard methods of obstruction theory, one proves the following theo-

rem:

17
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Theorem 2.3 �iG(M; �) = ( Aut(�1(M; �)) if i = 0,0 if i > 0
Therefore, the exact homotopy sequence of our fibration reduces to1! �1G(M)! �1M ��!Aut(�1M)! �0G(M)! 1

One verifies without difficulty the following facts:

1) If x 2 �1M , then �(x) is the inner automorphism corresponding to x.

2) �1G(M) is the center of �1M . This group is trivial except in the follow-

ing exceptional cases: the torus, �1G(T 2) = Z�Z; the Klein bottle: �1G(K2) =Z.

3) �0G(M) = Aut(M)=the group of inner automorphisms.

2.2 The Braid groups and their computation

(See [Bir75] for more details)

Let X be a topological space, n a positive integer and Pn(X) := Xn n �,

where � is the “big diagonal” of Xn, which is the set of n-tuples (x1; : : : ; xn)big diagonal

of points ofX , such that for some i 6= j, xi = xj . The symmetric group Sym(n)
acts freely on Pn(X) and by definition, Bn(X) := Pn(X)=Sym(n). One thus

has a Galois (regular) coveringSym(n) ! Pn(X)??yBn(X):
By definition, �1Pn(X) := the group of colored n-braids of X , and �1Bn(X)
is the group of n-braids of X .

Henceforth, X = R2, and we write�1Pn(R2) = Pn the colored n-braid group�1Bn(R2) = Bn the pure n-braid group



D
R

A
FT

30
 M

ay
 2

00
2
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Figure 2.1: A element of Bn.

We have an obvious exact sequence:1! Pn ! Bn ! Sym(n)! 1:
An element of Bn may be represented in the following manner: fix once and

for all a set of n distinct points x1; : : : ; xn in intD2. Then the element of Bn
is a system of arcs of D2 � I , going from (x1; : : : ; xn) � 0 to (x1; : : : ; xn) � 1,

transverse to every horizontal slice D2 � t. The arcs do not meet �D2 � I ,

and the whole is defined up to isotopy (leaving invariant the boundary of the

cylinder and respecting the projection D2 � I ! I).

With this representation, the law of composition in Bn is the same as for

cobordisms and the colored braids are those for which the arc leaving xi � 0
arrives at xi � 1. Figure 2.1 represents an element of Bn.

Theorem 2.4 (Fadell-Neuwirth) The map Pn(R2) ! Pn�1(R2) which “forgets”xn is a fibration with fibre Rn n (n� 1)points.
Corollary 2.5 Pn(R2) ' K(Pn; 1)Bn(R2) ' K(Bn; 1)
Remark. The theorem of Fadell-Neuwirth gives us a split short exact sequence1! Fn�1 ! Pn ! Pn�1 ! 1
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and Pn is determined by Pn�1 and the action of the free group Fn�1.

We will now give a presentation of the groupBn. In R2, consider the coor-

dinates (x; y), and for p = (p1; : : : ; pn) 2 Bn(R2) arrange the indices so thatx(p1) � x(p2) � � � � � x(pn):
By definition, Mi � Bn(R2) is the set of p’s such that x(pi) = xp�1), such as in

figure 2.2.

p
i+1

p
i-1

p
i

p
i+2

��

������ ��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��������������������������

Figure 2.2: Transverse orientation of Mi n Sj 6=iMj
Note the following choices:

(1) Mi n Sj 6=iMj is a sub-manifold of codimension 1 of Bn(R2) given the

canonical transverse orientation, defined as in figure 2.2. If the notation is

such that y(pi+1) > y(pi), a displacement of pi+1, along the positive normal,

pushes pi+1 so far that x(pi+1) > x(pi).
(2) Mi n Sj 6=iMj is connected.

(3) Bn(R2) nSi Mi is contractible.

These remarks imply that the simple loops ai, based in Bn(R2) nSi Mi and

such that ai crosses Mi exactly once (and does not cross any other stratum),

in the positive direction, generate Bn. One may find the relations among theai by considering what happens in a neighbourhood of the strata of codimen-

sion 2, where Mi and Mij meet.

Case 1. ji� jj � 2. At the level of R2, a point of Mi \Mj is as in figure 2.3.

One may move independently along the dashed horizontal arrows, which

give us a small square, transverse toMi\Mj inBn(R2), as shown in figure 2.4.
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We give the proper orientation to the strata Mi;Mj . This gives us the relationaiaj = ajai.
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Figure 2.5:
Figure 2.6:

Case 2. ji � jj = 1. At the level of R2, we have figure 2.5, and at the level

of Bn(R2), figure 2.6. From these we may read off the relation:aiai+1ai = ai+1aiai+1:
We therefore have the following theorem:

Theorem 2.6 (E. Artin) Bn admits generators a1; a2; : : : ; an�1 and relations[ai; aj ℄ = 1 (ji � jj > 1)aiai+1ai = ai+1aiai+1:
Corollary 2.7 B3 = �1(S3 n the trefoil knot).
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[The explanation of this “coincidence” is this: Bn(R2) may be identified

with the set of complex monic polynomials of degree n, having distinct roots.

Thus Bn = �1(C nn the discriminant locus ) . . . ].

The generator ai is the following braid:

1 2 � � � i i+ 1 � � � n
and the relation aiai+1ai = ai+1aiai+1 may be visualized as follows:i i+ 1 i+ 2 i i+ 1 i+ 2 =

aiai+1ai ai+1aiai+1
In particular, B2 � Z and the generator a1 is

Similarly, P2 � Z is generated by

and the natural inclusion P2 ,! B2 is multiplication by 2: Z �2�!Z.
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2.3 Diffeomorphisms of the two holed disk:
The spaces A(P 2), A0(P 2)

Let K � intD2 be a finite set of cardinality k. We introduce the following

notation:Di�(D2; rel(K; �)) :=fdiffeomorphisms D2 '�!D2; such that 'jK [ �D2 = idg;Di�(D2;K; rel �) :=fdiffeomorphisms D2  �!D2; such that  (K) = K; jD2 = idg:
We have a natural action ofDi�(D2; rel�) onBk(intD2), and onPk(intD2),

which furnishes us with two fibrations:Di�(D2;K; rel �) ,! Di�(D2; rel �)! Bk(int D2)
and Di�(D2; rel(K; �)) ,! Di�(D2; rel �)! Pk(int D2)

Applying the theorem of Smale:Di�(D2; rel �) ' �;
we have the following corollary:

Corollary 2.8

1) Every connected component ofDi�(D2; rel(K; �));Di�(D2;K; rel�) is contractible.

2) We have the canonical isomorphismsPk = �0(Di�(D2; rel(K; �)))Bk = �0(Di�(D2;K; rel �))
We will now consider the manifold (with boundary) P 2 which is the “disk

with two holes”, or the “pair of pants” (see figure 2.7.)

Remark. LetDi�(P 2; �2; �3; rel�1) = f' 2 Di�(P 2) : 'j�1P 2 = id; '(�2P2) = �2P2; '(�3P2) = �3P2g:
ThenDi�(P 2; �2; �3; rel�1) is manifestly of the same homotopy type asDi�(D2; rel(K; �)).



D
R

A
FT

30
 M

ay
 2

00
2
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∂
3
P²

∂2 P²

∂
1
P²

Figure 2.7: The “pair of pants” P 2
Proposition 2.9 �0(Di�(P 2; rel �)) = Z� Z� Z:
Proof.Consider the 1-jets of the diffeomorphisms, at two points of K . We ob-

tain a fibration: Di�(P 2; rel �P 2) ,! Di�(D2; rel(K; �))??yS1 � S1
with exact sequence0! �1(S1 � S1)! �0(Di�(P 2; rel �P 2))! P2 ! 0
One may verify that this sequence splits, that that extension is central, and

that the action of P2 on �1(S1 � S1) is trivial, which gives the stated result.

We now considerDi�+(P 2; �1; �2; �3) :=forientation preserving diffeomorphisms ' : P 2 ! P 2 such that '(�iP 2) = �iP 2g:
Proposition 2.10 Di�+(P 2; �1; �2; �3) is contractible.
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Proof.By restricting an element ' 2 Di�+(P 2; �1; �2; �3) to �1P 2 = �D2, we

have a fibration:Di�(P 2; �2; �3; rel �1)| {z } ,! Di�+(P 2; �1; �2; �3)P 2 = K(Z; 0) ??yrestri
tionDi�+S1 = K(Z; 1)
One verifies also that the arrow�1Di�+S1 ��!�0(P 2; �2; �3; rel �1) = P2
is an isomorphism, which gives the result.

Now let N2 be any compact surface, with non-empty boundary. DefineA(N2) := isotopy classes of arcs I � N2, with �I � �N2, each end free to

move on the respective connected component of �N2, and representing the

non-trivial elements of �1(N2; �N2), and letA0(N2) := fthe same as above but with several pairwise disjoint arcsg:
Corollary 2.11 A(P 2) consists of exactly six elements, classified by the connected

components of �P 2, in which the ends of the respective arcs fall.

Proof.Let � and � 0 be two representatives of elements of A(P 2) with ends in

the same connected component of �P 2. We may easily check that there is an

orientation preserving diffeomorphism(P 2; �)  �!(P 2; � 0):
Since �0Di�+(P 2; �1; �2; �3) = 0, this diffeomorphism is isotopic to the iden-

tity, which gives the result. The six models are given in figure 2.8.

Now let A0 be the set of ordered triples (a1; a2; a3), where ai � 0, ai 2 Z+,

and
Pi ai � 0 (mod 2). To � 2 A0(P 2), associatei(�) = (i(�; �1); i(�; �2); i(�; �3)) 2 A0

where i(�; 
) is the number of points � has in common with 
. For conve-

nience, we adjoin ; 2 A0(P 2), with i(;) = (0; 0; 0).
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2
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3
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Figure 2.8: The six models for A(P 2).
Theorem 2.12 The map A0(P 2) i�!A0 is a bijection.

Proof.We begin by constructing a mapA0 ��!A0(P 2) such that i(�(a1; a2; a3)) =(a1; a2; a3). If (a1; a2; a3) 6= 0, then the point with barycentric coordinates( a1P ai ; a2P ai ; a3P ai )
falls in one of the four regions of figure 2.9.X1a1 � a2 + a3 triangle inequalitiesa2 � a1 + a3 a3 � a1 + a2

(�r)X2 X3
Figure 2.9:

If (a1; a2; a3) satisfies the triangle inequalities, we consider the non-negative

integersx12 := 12(a1 + a2 � a3); x23 := 12(a2 + a3 � a1); x31 := 12(a3 + a1 � a2)
and we define �(a1; a2; a3) to be the element of A0(P 2) which consists of xij =xji segments of the type �ij , for i 6= j.
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Figure 2.10:

If a1 � a2 + a3, we setx11 := 12(a1 � a2 � a3); x12 := a2; x13 := a3;
and we define �(a1; a2; a3) as in figure 2.10.

The other cases are treated in a similar manner. One may verify that on�(� r) the different definitions agree and that i Æ j is the identity. Thus i is

surjective.

We now observe that the compatible pairs of elements of A0(P 2) are ex-

actly those which are joined by a segment in figure 2.11.

The four triangles in figure 2.11 correspond canonically with the four tri-

angles of figure 2.9. More precisely, let x�;� be the number of segments of

type ��;� which appear in � 2 A0(P 2). We have the following four mutually

exclusive situations:

1) x�;� = 0 for � = 1; 2; 3, which implies that i(�) 2 (� r).
2) x11 6= 0, which implies that a1 > a2 + a3:
..............

Suppose now that �1; �2 2 A0(P 2) and that i(�1) = i(�2). We have previ-

ously deduced that �1 and �2 are in the same one of the four situations de-

scribed above; by a calculation of linear algebra ............ which are (by defini-

tion) the same for �1 and �2, we conclude that the x�;� are also the same. We
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τ 33

τ 23 τ

τ 12

τ 11τ 13

22

Figure 2.11:

still have to prove that if �1; �2 2 A0(P 2) are such that for these x�;� are equal,

then �1 = �2. The proof of the general case is an induction on
X��� x�;� . We

leave the details to the reader. We have thus proved that i is injective.

Remark. Let � 2 A0(P 2). There does not exist any non-trivial element of�0Di�+(P 2; �1; �2; �3; �). In particular, for a given � , one may not interchange

the different connected components of � among themselves.
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Chapter 3
Highlights of Hyperbolic Geometry in
Dimension 2
and Generalities on i : S � S ! R +

by V. Poénaru

3.1 A Little Hyperbolic Geometry

Consider a compact surface M , with a riemannian metric of curvature �1,

for which the boundary is geodesic if it is non-empty. The universal coveringfM is isometric to a domain in the hyperbolic plane H 2, possibly bounded by

geodesics of H 2.

Lemma 3.1 Let � and � be distinct geodesic arcs in M , with the same endpoints.

Then the closed curve � [ � is not homotopic to zero.

Proof. If �[� is homotopic to zero, then it lifts to a closed curve in fM . But two

geodesics in H 2 may not meet in two points. This property of H 2 results, for

example, in the Gauss-Bonnet formula: for a disk D with a riemannian metric

so that the boundary is a geodesic polygon, we haveZ ZC K = 2� �X exterior angles

where K denotes the curvature.

Lemma 3.2 Let V be a compact riemannian manifold with a totally geodesic bound-

ary. Then in every (free) homotopy class of maps S1 ! V there is a geodesic immer-

sion, having the minimum length of loops within its homotopy class.

29
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Proof.

We take a homotopy class � 2 [S1; V ℄, and set L := N� where � > 0, and

the integer N are chosen as follows: � should be smaller than the injectivity

radius of the exponential map, and N large enough so that � contains at least

a curve of length � L.

Let I(�; �;N) be the space of continuous maps S1 ! M in the class �,

composed of at least N geodesic arcs of length � � each. This space, with the

compact-open topology, is compact. The length function y is continuous. Let� be a curve which realizes the minimum length in I(�; �;N). It is easy to

check that � is in fact smooth (if �V 6= ;, the hypothesis that �V is totally

geodesic intervenes here.)

To see that the length of � is a minimum for the class �, it suffices to remark

that ifC is a rectifiable curve in �, of length� L, there exists a curve belonging

to I(�; �;N) of length less than or equal to that of C .

Remark. Without compactness, with only the hypothesis that the metric is

complete, one finds that all elements of �1(V; x0) are realizable by closed

geodesics which, in general, are not smooth in x0.

Lemma 3.3 For every covering transformation T of fM overM , there exists a unique

geodesic invariant under T . It is the lift of the closed smooth geodesic in M which is

in the free homotopy class � of �1(M;x0) corresponding to T .

Proof.

Existence. Here is a proof which does not make use of the hypothesis on

curvature. We take as a model for fM the set of continuous paths f� : [0; 1℄ !M j �(0) = x0g quotiented by the relation � �  if � is homotopic to  with

endpoints fixed. The projection p : fM !M is given by � 7! �(1). The constant

path defines the basepoint in fM . Let  2 fM , p( ) = y and let � be a path inM such that �(0) = y; the lifts of � in fM starting from  is a one parameter

family of paths inM , obtained by truncating the path  ��; this family begins

with  and ends with  � �. The left action of �1(M;x0) on fM is defined as

follows. For � 2 �1(M;x0), represented by a loop �, and for  2 fM , we setT�( ) := � �  .

This being done, consider the element � for which T = T� By lemma 3.2,

the free homotopy class of � contains a smooth closed geodesic g1. Let x1 be
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a point in the image of g1 and � a path joining x0 to x1; this is chosen so that��g1 ���1 belongs to �. If �̂ � g1 is the lift of ��g1 starting from the base point

of fM , we have ^� � g1(1) = ^� � g1 � ��1 = T�(~�(1)):
Then, if we take in fM the image of �̂ � g1 and all of its translates by T�n , n 2 Z,

we construct a connected component of p�1(� � g1), consisting of a geodesicg 2 fM and lifted segments of �, as in figure 3.1. By construction, g is invariant

under T�.

Figure 3.1:

A second proof of existence which utilizes the fact that M is a compact

surface with a hyperbolic structure is the following: The transformation T� is

an isometry of H 2. Since T� does not have any fixed points, it is not elliptic.

On the other hand, if � is a parabolic isometry of H 2 (having a unique fixed

point on the circle at infinity), then for all � > 0 there is an x 2 H 2 such thatd(x; �(x)) < �. If T� is parabolic, this implies the existence of closed geodesics

of arbitrarily short length on M , which is forbidden by compactness of M .

Hence T� is hyperbolic (having two fixed points on the circle at infinity); the

geodesic g in H 2 joining these fixed points is hence invariant under T�. Henceg=T� is a smooth closed geodesic in the same free homotopy class as �.

Unicity. Let g1 and g2 be two distinct geodesics in fM , invariant under T .

If g1 \ g2 is non-empty, the intersection consists of a single point, which is

invariant under T ; but this is impossible.

Hence g1 \ g2 = ;. Let x 2 g1; at x, we drop a perpendicular to g2; we

denote by Æ the resulting geodesic segment. We note that TÆ \ Æ = ;, since
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otherwise we have a geodesic triangle the sum of whose interior angles is> �.

Now g1; g2; Æ;T Æ form a quadrilateral for which the interior angles sum to2� (see figure 3.2), but this is impossible by the Gauss-Bonnet formula. (This

can also be seen from more elementary reasons).

Figure 3.2:

Lemma 3.4 Let � be a non-trivial element of �1(M;x0). Then there exists a unique

smooth closed geodesic in the homotopy class of �.

Proof. Existence is already assured by lemma 3.2. Suppose that g1 and g01 are

two such geodesics. The “existence” part of the preceding proof gives us two

distinct T�-invariant geodesics in fM .

But the uniqueness argument of the preceding lemma tells us that pre-

cisely that this is impossible: just apply the fact that �1(M;x0) is torsion free.

3.2 The Teichmüller space of the two-holed disk

The pair-of-pants P 2 (the two-holed disk) is the fundamental building block

in the theory of surfaces. We showed (in exposé 2) that Di�+(P2; �1; �2; �3) is

contractible; in particular, a diffeomorphism which preserves orientation and

maps each boundary component to itself is isotopic to the identity.
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∂
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1
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Figure 3.3:

If � is a metric of curvature �1 on P 2, for which every boundary com-

ponent is geodesic, we say that (P 2; �) is a P 2-Teichmüller surface. By def-

inition, two surfaces (P 2; �) and (P 2; �0) are equivalent if there is a diffeo-

morphism � of P 2, isotopic to the identity, such that ��� = �0. We see thatDi�+(P2; �1; �2; �3) is connected, the set of equivalence classes, which we de-

fine to be the Teichmüller space T (P 2) of P 2, may be identified with the Teichmüller spaceT (P2)quotientH(P 2)=Di�+, whereH(P 2) is the space of riemannian metrics of cur-

vature �1 for which the boundary is geodesic:T (P 2) = H(P 2)=Di�+:
We give H(P 2) the C1 topology and T (P 2) the quotient topology. We

have a continuous natural mapL : H(P 2)! (R�+)3 = f triples of numbers > 0g
defined by L(�) = (`�(�1P 2); `�(�2P 2); `�(�3P 2));
where `� designates the length in the metric �. This induces a map which we

denote by the same letter L : T (P 2)! (R�+)3:
Theorem 3.5 The map L : T (P 2) ! (R�+)3 is a homeomorphism. Moreover,L : H(P 2)! (R�+)3 admits continuous local sections.
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34 (FLP — Exposé 3: Draft – RCSversion 1.6) May 30, 2002

The classification of the P 2-Teichmüller surfaces reduces to the classifi-

cation of right hyperbolic hexagons, for a hyperbolic pair-of-pants may be

constructed naturally by isometrically gluing two such hexagons as indicated

in lemma 3.7. For the other direction, an “abstract” hyperbolic hexagon X ,

whose every angle is right and whose boundary components are all geodesic

is isomorphic to a hexagon in the hyperbolic plane H 2; to see this, we use X
as a fundamental domain, and use symmetries on the sides of X to construct

a complete, simply connected hyperbolic manifold Y ; by a classical theorem

(Hadamard-Cartan, [CE75]), Y is isometric to H 2. Therefore, we focus our at-

tention on the set Hex of (direct) isometry classes of right hexagons in H 2
which have geodesic boundary, and which are equipped with a distinguished

vertex. We write a1; b1; a2; b2; a3; b3 for the sides, named in clockwise sequence

starting from the base vertex (see figure 3.4).

Figure 3.4:

Lemma 3.6 The lengths `(a1); `(a2); `(a3) establish a bijection from Hex to (R�+)3.

Proof.

Existence. Let `1; `2; `3 > 0. We will construct a hexagon X in H 2 such that`(ai) = `i for i = 1; 2; 3.

We start by fixing three geodesics G;G0; G00 as in figure 3.5; G and G00 are

a distance `1 apart. Let x 2 G and let Lx be the perpendicular to G at x; if x
is sufficiently far from x0, then Lx never meets G00 again (We suggest that the

reader sketch the picture in the Poincaré model). Let x(`1) be the point of G
closest to x0 satisfying Lx(`1) \G00 = ;:
We put f(`1) := d(x0; x(`1)).
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Figure 3.5:

We have sketched the construction in figure 3.6; it is determined up to

isotopy by the numbers `1; `3 and �.

Figure 3.6:

Let �(�) be the distance from G001 to G002 ; this is a continuous function of

the length �, such that �(0) = 0 and �(+1) = +1 (to vary �, we utilize

the fact that there exists a one-parameter group of isometries of H 2, leaving G
invariant); � takes every positive value. This proves the existence of X .

Unicity. As we have seen in the preceding, giving three consecutive sides

of a hexagon determines it completely.

Thus if the right hexagons X and X 0 in figure 3.7 satisfy `i = `(ai) = `(a0i)
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and are not isometric, then the lengths `(b3) and `(b03) are not equal; say that`(b03) > `(b3).

Figure 3.7:

It is simple exercise in hyperbolic geometry to see that there exists a (unique)

perpendicular of b3 to a2 in X . This decomposes the lengths of b3 and a2 as

shown in figure 3.8: `(b3) = �+ �; `(a2) = 
 + Æ.

Figure 3.8:

In X 0, we erect perpendiculars to b03 at the distances � and � from the two

endpoints, as shown in figure 3.9. In this figure, all of the marked angles of

one stretch are equal to �=2; the others are not necessarily.

Figure 3.9 gives a contradiction, since we have 
 + Æ > 
 + Æ.
Remarks.

(1) The unicity which we have shown may be interpreted as the follow-

ing fact: `(a1) and `(a2) being fixed, the function `(b3) ! `(a2) is monotone;
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Figure 3.9:

furthermore, the function �! �(�) (figure 3.6) is a homeomorphism of R+.

(2) In the notation of figure 3.4, we may parameterize the set Hex by(`(a1); `(a2); `(a3)) or by (`(b1); `(b2); `(b3)). The transition from one set of co-

ordinates to the other is by means of a homeomorphism of (R�+)3. [In effect,

we will view this transition from (`(a1); `(a2); `(a3)) to (`(b1); `(b2); `(b3)) as

being realized by a homeomorphism of (R�+)3. In the following, we may eas-

ily verify that the same thing is true for the transition from (`(a1); `(b2); `(a3))
to (`(b3); `(a2); `(a3)), etc . . . ]

(3) In figure 3.6, we see that if `1 := `(a� 1) and `3 := `(a3) are fixed, and

if � := `(a2) tends to 0, then `(b1) and `(b2) tend to 1.

The classification of right hexagons leads to a classification of pairs-of-

pants, since every P 2-Teichmüller surface is the double of a hexagon, as indi-

cated more precisely in the statement of lemma 3.7.

Lemma 3.7 Given a P 2-Teichmüller surface:

(1) there exists a unique simple geodesic gij of P 2 which joins �iP 2 to �jP 2 and

which is perpendicular to the two. The arcs g12; g13, and g23 are mutually disjoint

(figure 3.10).

(2) On �1P 2, the endpoints of g12 and g13 cut the segments into equal lengths.

The same is true for �2P 2 and �3P 2.
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Figure 3.10:

Proof. A path of shortest length joining �iP 2 to �jP 2 meets the boundary at

right angles at its endpoints (the first variation formula [CE75]). We deduce

immediately that such a path is simple. For unicity, we remark that the homo-

topy class is fixed by the condition that the path be simple; by an argument

using negative curvature as in lemma 3.3, we obtain the result (1).

(2) The arcs g12; g13 and g23 cut P 2 into two right hexagons. These are iso-

metric since they have three sides equal.

Proof of theorem 3.5

(1) Existence. Given lengths `1; `2; `3 > 0, we may construct a unique right

hexagon X with `(ai) = `i=2 for i = 1; 2; 3 (lemma 3.6.) To for the pair-of-

pants, we take two copies of X , which we glue together along b1; b2, and b3.

Thus, we have `(�iP 2) = 2`(ai) = `i. This shows the surjectivity of L.

(2) Unicity. Let �0; �00 2 H(P 2), such that `i = `�0(�iP 2) = `�00(�iP 2), for i =1; 2; 3. We will prove that there exists f 2 Di�+(P2; �1; �2; �3)which transports�0 to �00.
By lemma 3.7 (P 2; �0) = X 01[X 02, and (P 2; �00) = X 001[X 002 , whereX 01;X 02;X 001 ;X 002

are right hexagons, parameterized by (`1=2; `2=2; `3=2). Hence, there exists a

direct isometry of X 01 to X 001 and X 02 to X 002 ; the sought-for f is the “union” of

these two isometries.

(3) Continuity. We will see that the continuous mapL : T (P 2)! (R�+)3
is bijective. To show thatL�1 is continuous, it suffices to show thatL : H(P 2)!(R�+)3 admits continuous local sections. The easiest way is to change coordi-
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nates in (R�+)3, passing from the lengths of the boundary curves to the lengths`12; `23; `13 of the geodesics g12; g23; g13 (figure 3.10). This gives a new contin-

uous map �: H(P 2)! (R�+)3;
and it is sufficient to prove that � has continuous local sections.

We begin with a few preliminaries. Let E be the portion of R2 which is the

union E0 := f�1 � y � 1; x = 0g [E1 := f�1 � y � 1; 0 � x � 1g:
We define C1(E) to be the set of functions f : E ! R such that f jE0 2C1(E0) and f jE1 2 C1(E1). We have a natural topology on C1(E) com-

ing from the C1 topologies C1(E0) and C1(E1).
Lemma 3.8 There is a continuous map � : C1(E)! C1(R2) such that�(f)jE = f:
Proof. Let f 2 C1(E). By applying a result of Seeley [See64], we may extend

the normal derivative of f jE0 \ E1 to all of E0. This gives us a first exten-

sion of C1(E) in the infinite Whitney jets on E (we use here the fact that E0
and E1 are in regular position). We now apply the Whitney extension theo-

rem [Mal66].

By definition, a truncated hexagon is a set composed from the boundary truncated hexagon

of aC1 hexagon of R2 and of the collared neighbourhoods of three alternating

sides (figure 3.11).

Figure 3.11: Z = truncated hexagon.

The C1 structure of the truncated hexagon Z is locally like that of E
(wherever there are no problems). Lemma 3.8 together with some classical

geometry gives the following lemma.
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Lemma 3.9 Let Emb(Z;R2) be the set of C1 embeddings of Z in R2, with the C1
topology. If � : (Rn; 0) ! Emb(Z;R2) is a C1 function germ, we may lift � to a

germ �: (Rn; 0)! Di�(R2) such that �(0) = Id and �(t) = �(t)�(0).
Now let l0 := (l012; l023; l013) 2 (R�+)3 and let X(l0) be a right hyperbolic

hexagon in H 2 parameterized by l0. Let G1 and G2 be two geodesics carrying

two consecutive sides ofX(l0). For l near l0 in (R�+)3, we consider the hexagonX(l) lying on G1 [G2 with X(l0) (figure 3.12). For every l, the double of X(l)
along the “marked” sides (those whose lengths are parameterized by `ij is a

hyperbolic manifold, denoted by 2X(l); it is diffeomorphic to P 2.

Figure 3.12:

The question is to find a diffeomorphism  (l) : 2X(l) ! 2X(l0), so that

the metric �(l), the natural image of 2X(l) under  (l), depends continuously

on l as elements of H(2X(l0)).
For small fixed � > 0 (independent of l), we consider in X(l) the geodesic

collars of radius � along the marked sides; we thus associate to X(l) a trun-

cated hexagon Z(l). Every rectangle of Z(l) is foliated on the one hand by

the geodesics orthogonal to the sides of the hexagon, and on the other by the

orthogonal trajectories of these geodesics. It is easy to construct a continuous

function germ � : ((R�+)3); l0)! Emb(Z(l0);R2)
such that

1. �(l0) is the standard embedding;

2. �(l)[Z(l0)℄ = Z(l);
3. �(l) respects the names of the marked sides and the foliations of the

rectangles.
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By lemma 3.9, there exists a germ : ((R�+)3); l0)! Emb(X(l0);R2)
such that  (l)jZ(l0) = �(l). Condition (3) assures that 2 (l) is a diffeomorph-

ism of the doubles 2X(l0) ! 2X(l). On the other hand, the construction as-

sures that the metric on X(l0), obtained from the natural metric on X(l) via (l), depends continuously on l. Therefore  (l) := [2 (l)℄�1 has all of the

required properties.

3.3 Generalities on Geometric Intersection of Simple Curves and
on i : S � S ! R+

In what follows,M is an orientable surface of genus g > 1. For practicality, we

do not explain any case except where M is closed; the adaptations to the case

of a non-empty boundary are left to the reader. I consider the set S of isotopy

classes of simple curves on M not homotopic to zero. For �; � 2 S , we definei(�; �) as the minimal number of points of intersection of a representative for� with a representative for �. We are led to a mapi� : S ! RS+
Throughout this exposé, we shall make use many times of the following

theorem due to D. Epstein [Eps66b]. Let f0 : S1 !M be an two-sided embedding

(i.e. with trivial normal fibre) which does not bound a disk; if g1 is an embedding

homotopic to f0, then f0 and f1 are isotopic. [With a base point, the same thing is

true if, additionally, f0 is not the boundary of a Möbius band.]

In the same article, one finds the relative version: If N is a surface with

boundary and if A;B are two embedded arcs with �A = �B = A \ �N = B \ �N ,

homotopic with endpoints fixed, the A and B are isotopic rel �.

We also use the following two facts which may be found in [Eps66b].

Every simple curve homotopic to zero in a surface with boundary bounds a disk.

(This is a consequence of the Jordan-Schönflies theorem.)

On a surface, a two-sided embedding of the circle is not homotopic to any map

which covers k-fold, for k > 1, a simple curve with two sides.
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Proposition 3.10 Let �00 and �01 be two transverse simple curves in M , not homo-

topic to zero. We suppose that their isotopy classes �0 and �1 are distinct. Then the

following conditions are equivalent.

(1) 
ard(�00 \ �01) = i(�0; �1).
(2) All simple closed curves formed from an arc of �00 and an arc of �01 are not

homotopic to zero in M .

(3) If f�0 and f�1 are the connected components of p�1(�00), respectively p�1(�01),
in the universal covering p : fM !M then 
ard(f�0 \f�1) � 1.

(4) There exists in M a riemannian metric � of curvature �1, such that �00 and�01 are geodesics.

Proof. The reader will notice that the following implications are immediate.(1) =) (2); in effect, a simple closed curve 
 of �00[�01 which is homotopic

to zero in M , is the boundary of a disk D; furthermore, 
 is the union of an

arc of �0 and of an arc �01; to cross the disk, we may make an isotopy of �01
which diminishes its number of points of intersection with �00.(3) =) (2) by the theory of covering spaces.(4) =) (2) and (3) by lemma 3.1.

Lemma 3.11 If 
ard(�00 \�01) > i(�0; �1), there exist two distinct points q1 and q2
of �00\�01 and two (not necessarily simple) paths �0;�1 joining q0 to q1, respectively

on �00 and �01, such that the singular loop �0 ���11 is homotopic to zero in M . Hence(3) =) (1).
Proof. By hypothesis, there is a homotopy ht : S1 !M , for t 2 [0; 1℄, such thath0 parameterizes �00 and such that h1(S1) satisfies
ard(h1(S1) \ �01) < 
ard(�00 \ �01):
We may suppose that the isotopy ht is in general position with respect to�01; that is to say that h : S1 � [0; 1℄ ! M is transverse to �01. Then h�1(�01 is

a submanifold of dimension 1 transverse to the boundary, which possesses

four types of connected components, represented in figure 3.13.

The points q1; q2; q3; : : : in the figure are exactly the preimages under the

embedding h0 of the points of intersection �00 \ �01. The hypothesis signifies
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I II III IV

Figure 3.13:

that there exists at least one component �1 of type I; we obtain �0 by choosing

the arc q1q2 of S1 � f0g which is homotopic to �1, with endpoints fixed, inS1 � [0; 1℄.
Lemma 3.12 (2) =) (3)
Proof. If the components f�0 and e�1 cut each other in more than one point infM , it is easy to find an embedded disk� in fM whose boundary is the union of

an arc of e�0 and an arc of e�1. On �, one sees that p�1(�00[�01) as in figure 3.14,

where p�1(�00) is a dashed and p�1(�01) is drawn as a solid line.
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Figure 3.14:

We may find a (minimal) disk Æ whose boundary is also the union of a

dashed arc and a solid arc and whose interior does not meet p�1(�00[�01). The

immersion p embeds the boundary of Æ because of minimality. Now, we may

affirm that p embeds Æ, for an immersion in codimension 0 which embeds the

boundary and whose interior does not meet the border is an embedding (the

number of points for the fibre is locally constant.)

Hence, we have proved the equivalence of conditions (1), (2), (3) of propo-

sition 3.10.
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It remains to prove (1) =) (4). This follows immediately from proposi-

tion 3.13 and theorem 3.16.

Proposition 3.13 Let �00; �000 , and �01 be three simple curves in M , not homotopic to

zero. We suppose

1. �00 and�000 belong to the same isotopy class �0, which is distinct from the isotopy

class �1 of �01;

2. 
ard(�00 \ �01) = 
ard(�000 \ �01) = i(�0; �1).
Then there exists an ambient isotopy of the pair (M;�01) which pushes �00 onto �000 .

Extension. Using the same proof as below, the proposition remains valid if �01
is a simple arc representing a non-trivial element of �1(M;�M).
Proof.

Let h : S1 � [0; 1℄ ! M be a transverse map onto a01, whose restrictionhjS1 � f0g (respectively hjS1 � f1g) parameterizes �00 (respectively �01).

Lemma 3.14 The closed components of h�1(�01) are homotopic to zero in S1� [0; 1℄.
Proof. Let 
 be a component of h�1(�01), not homotopic to zero in S1 � [0; 1℄;
then 
 is isotopic to the boundary. Let d be the degree of h : 
 ! �01. We cannot

have d = 0, since otherwise �00 is homotopic to zero.

We cannot have jdj > 1, since otherwise, a nontrivial multiple of �01 is

an embedded curve, that is to say �00. This is known to be impossible (see

Epstein [Eps66b]). If jdj = 1, this means �00 is homotopic to �01, which case we

have excluded.

Conclusion of proof of proposition 3.13. In the following, the components

of h�1(�01) are of the type I, II, II, IV as in figure 3.13. In fact, by the second

hypothesis, types I and IV do not exist. This is so, as �2(M;�01) = 0, it is easy

to kill the components of type III. If after this, h�1(�01) is empty, we conclude

that �00 and �000 are homotopic (hence isotopic) in M � �01 and we have the

conclusion of the proposition by extending the isotopy to support inM��01. If

not, the rest of the components are of type II, which we may draw as vertical.
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However, in general, the map h thus constructed is singular and does not give

an isotopy.

Let s1; : : : ; sn be the points of h�1(�01) \ S1 � f0g; these cut the circle into

intervals I1; : : : ; In and, if h�1(�01) = fs1g � [0; 1℄ [ � � � [ fsng � [0; 1℄, we

may consider hjIk � [0; 1℄ as a proper homotopy (i.e., the boundary moves

within the boundary) between two embedded arcs in the surface N obtained

by cutting M along �01. We remark that, by hypothesis (2), for all k, hjIk �f0g represents a non-trivial element of �1(N; �N). Proposition 3.13 is then

obtained by applying to each arc lemma 3.15 below, which generalizes the

relative version of the result of Epstein [Eps66b].

Lemma 3.15 Let N be a surface with boundary, and 
0 and 
1 two properly em-

bedded arcs in N . Let h : [0; 1℄ � [0; 1℄ ! N be a proper homotopy between these

arcs: h(t; 0) (respectively h(t; 1)) parameterizes 
0 (respectively 
1) and h(0; u) andh(1; u) belong to �N for all u.

Then h is deform able, rel [0; 1℄� [0; 1℄, to an isotopy from 
0 to 
1. Furthermore,

if h(0; u) = h(0; 0) for all u (respectively h(1; u) = h(1; 0)), then the deformation

may be made through maps with the same properties.

Proof. As usual these situations, the lemma is clear if 
0 and 
1 do not intersect

except at their endpoints; indeed, 
0 and 
1 delimit a disc in N , in which the

required isotopy is done; the isotopy is a deformation of the initial homotopy,

for N is an Eilenberg-MacLane space.

In the case where they do intersect, for the separation we consider the

universal covering p : eN ! N ; consider one component of p�1(
0) and the

union e�1 of all components of p�1(
1). If we are careful enough to begin with

an initial isotopy, leaving fixed the endpoints of 
0, to make 
ard(
0 \ 
1) as

small as possible then by the equivalence (1) () (2) in proposition 3.10, e
0
meets every component of e�1 in at most one point.

Let e
1 be any component of e�1; we denote by e
i(0) and e
i(1) the endpoints

of 
i. If e
0 and e
1 meet (somewhere other than at their endpoints), we have the

configurations of figure 3.15. In this figure, the endpoints of the arcs belong

to distinct components of � eN , unless explicitly indicated otherwise.

Configuration (I) is excluded; indeed, this configuration forbids the exis-

tence of a proper separating homotopy. Similarly, (II) is excluded in the case
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Figure 3.15:

where h(0; u) is fixed. By the same argument, configurations (III) and (IV) are

excluded, if in addition, h(1; u) is fixed.

Thus, in the case where the endpoints are fixed, the lemma is proved.

Let us analyse the case where the origin e
0(0) is fixed; then we only have

configurations (III) and (IV). We see in eN a triangle �. At the cost of changing

components of e
1, we may suppose that int(�) \ e�1 = ;. Therefore, pj� is

an embedding; there is an isotopy of 
0 supported in a neighbourhood ofp(�), which reduces the number of intersections with 
1 by at least one. We

continue in this manner until inte
0\e�1 = ;. We treat similarly the case where

the two endpoints are free.

Theorem 3.16 If a surface M has a metric of curvature �1, all simple curves not

homotopic to zero are isotopic to a simple geodesic. Moreover, two simple geodesics

meet in the minimal number of points of intersection in their isotopy classes.

Proof. The second part of the theorem follows from the implication (3) =)(1) in proposition 3.10.

Let f : S1 ! M be an embedding not homotopic to zero; by lemma 3.4,f is homotopic to a geodesic immersion g. Let p : fM ! M be the universal

covering. Let ef0; ef1 : R ! fM be two proper embeddings with distinct images

under f ; let eg0 and eg1 be the geodesic maps which are their homotopic images.
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By lemma 3.1, eg0 and eg1 are embeddings which have at most one point in

common. This shows that eg0 and eg1 do not again meet.

If fM is regarded as the interior of the Poincaré disk D 2, then for i = 0; 1,egi has two limit points. Since the homotopy from egi to efi is obtained by lifting

a homotopy in M , the hyperbolic distance from egi(x) to efi(x) is uniformly

bounded for x 2 R. In a neighbourhood of infinity, the euclidean arc length

is infinitesimally small compared with the hyperbolic arc length; hence asx ! �1, the euclidean distance from egi(x) to efi(x) tends to zero. Henceefi has the same limit points on �D 2 as egi. Now, if eg0 and eg1 have a common

point, then by an intersection homology argument (or by the Jordan theorem),ef0 and ef1 must meet again. This is impossible, for f is an embedding.

Thus we have proved that the image of g is a simple curve which g covers

a certain number of times. To see that g as an embedding, we apply the result

of Epstein cited in the beginning of the paragraph.

We can give an application of the theorem which clarifies condition (3) of

proposition 3.10.

Corollary 3.17 Let �00 and �01 be two simple curves which intersect transversely. We

suppose that they have components e�i (i = 0; 1) in p�1(�0i) in the universal covering

satisfying 
ard(e�0 \ e�1) =1. Then the classes �0 and �1 in S are equal.

Proof. Considering the hypothesis of transversality, we have 
ard(�00 \ �01) <1. Therefore there are points � 2 �00 \ �01 and x; y 2 e�0 \ e�1, such that x 6= y,p(x) = p(y) = �. We orient every arc e�i from x to y and �0i like e�0i. Consider�0; �1 as elements of �1(M; �). The segment from x to y on e�0 (respectivelye�1) covers �00 k times, (respectively �01 l times). We therefore have in �1(M; �)
the equality �k0 = �l1:
Now, give M a metric of curvature �1. If gi designates the (unique) geodesic

of fM invariant under T�i , we see that T�k0 = T�l1 leaves invariant g0 and g1.

Thus g0 = g1, p(g0) = p(g1) and �00; �01 are (freely) homotopic to the same

geodesic in M .

From the equivalence (1) () (2) in proposition 3.10, we deduce the

following fact. Let �0; �0; 
0 be three simple arcs 6� 0 in M , with �0 \ 
0 =
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0 = ;; if 
ard(�0 \ �0) is minimal in M � 
0, then 
ard(�0 \ �0) is also

minimal in M . This criterion will be used in what follows.

We recall from exposé 1 that P(RS+) is the “projective” space associated toRS+ and that � : RS+ � f0g ! P (RS+)
is the natural projection.

Proposition 3.18 1. The image of i8 is continuous in RS+ � f0g.

2. The map �i� (in particular i�) is injective.

Proof. It suffices to prove that if �1 6= �2 2 S , there exists � 2 S such thati(�1; �) = 0 6= i(�2; �):
If i(�1; �2) 6= 0, it suffices to take � = �1. If i(�1; �2) = 0, there exist simple

curves �01 2 �1 and �02 2 �2 such that �01 \ �02 = ;. By cutting m along �01, we

obtain a surface N containing �02 in its interior.

As �02 is not isotopic to �01, there exists in N a curve �0 not separable from�02 inN . If �02 does not separateN , we take �0 with 
ard(�0\�02) = 1. If �02 sep-

arates N into N1 and N2, we take �0 = I1 [ I2 where Ij is an arc representing

a non-trivial element of �1(Nj ; �02); this is possible since neither N1 nor N2 is

an annulus or a disk.

If � is the isotopy class of �0 in M , we have, by proposition 3.10, thati(�2; �) 6= 0.

3.4 Systems of simple curves on M and hyperbolic isometries

I consider a system of distinct elements �1; : : : ; �k 2 S , with the property

that �l; �q) � 1. We define the complex �(�1; : : : ; �k) by taking as vertices�1; : : : ; �k; the vertices �l; �q are joined by an edge if i(�l; �q) = 1. I will

henceforth suppose that �(�1; : : : ; �k) is a tree.

Lemma 3.19 Under the conditions above, let �0j; �00j 2 �j we such that 
ard(�0l; �0q) =
ard(�00l ; �00q ) = i(�l; �q). Then there exists a diffeomorphism of M , isotopic to the

identity, which transforms [�0j into [�00j .
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Proof. For k = 2, this is proposition 3.13. To apply induction, we suppose

that �0j = �00j for j � l, l � 2, the indexing being compatible with the tree

structure. Let p; q be such that p � l < q, and i(�p; �q) = 1. Let N be the

manifold obtained by cutting M along the arcs �0j , where j � l; j 6= p. Then�0p is cut in one of many arcs in N ; let I be one such which meets �0q (�0q is a

closed curve in N since � is a tree); as 
ard(�0q \ I) = 1, the arc I represents a

non-trivial element of �1(N; �N).
We prove that �q cuts in one point the same arc I (and not some possibly

different component of �0p \ N ). If not, for some j 6= p such that j � l andi(�j ; �p) = 1, we have �j = �q [look at the preimage of �0j of the range of

the homotopy from �0q to �00q in M ; one of these components is necessarily

parallel to the boundary of an annulus]. The extension of proposition 3.13

is now applicable: we have, in N , an isotopy which pushes �00q onto �0q and

which leaves �0p \N alone.

Application. Let � be a metric of curvature �1 on the surface M . We consider

the simple curves �01; : : : ; �0k as in figure 3.16 (we consider M to be closed

here); M � [�0j is a cell. Let �00j be the geodesic, in the metric �, in the isotopy

class of �0j ; we may check that 
ard(�00l \ �00q ) = 
ard(�0l \ �0q). By lemma 3.19,M � [�00j is a cell. In particular, figure 3.16 is realizable in geodesics.

4  

1

2

3

β

β
β

β

Figure 3.16:

Theorem 3.20 Let � be a metric of curvature�1 on a compact surfaceM . The groupI(M;�) of �-isometries is finite and the only isometry isotopic to the identity is the

identity.

Proof. I begin by considering the setMM of all maps M !M , with the topol-

ogy of pointwise convergence. By the theorem of Tychonov, MM is compact.
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We remark, as an aside, that on I(M;�) the topology of pointwise conver-

gence and the uniform topology coincide. [Indeed, if I consider a finite set X
in M , sufficiently dense, an isometry is completely characterized by what it

does on X . . . .] We remark that I(M;�) is closed in MM .

Furthermore, I claim that an isometry isotopic to the identity is equal to

the identity. Indeed, let � be such an isometry; the action of � on S is trivial; by

the unicity of geodesics in a class � 2 S in hyperbolic geometry, the geodesicg� in the class � 2 S is invariant: �(g�) = g�. We deduce easily that � is the

identity on the system of geodesics in figure 3.16. Hence, � is the identity on

the complementary cell.

Thus, I(M;�) is discrete. But a closed discrete set in a compact space is

finite.

Corollary 3.21 Let f 2 Di�(M) and let T (f) be the natural action of f on the

Teichmüller space of M (see exposé 7). If T (f) has a fixed point, there is a periodic

diffeomorphism of M isotopic to f .
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Chapter 4
The space of simple closed curves on a
surface

by V. Poénaru

4.1 The weak topology

Let M be a closed oriented surface of genus g � 2. Denote by S the space of

isotopy (= homotopy) classes of simple, closed, not oriented curves which are

not homotopic to zero in M . We have already seen (exposé 3, section 3) that

the composite map S i��!RS+ � f0g ��!P (RS+)
is injective. The map i� extends to a map which we will denote by the same

symbol: i� : R+ � S ! RS+
by the formulai�(�; �)(�) = �i(�; �) where � 2 R+, and �; � 2 S
Remark. If i�(R+ � S) designates the closure of i�(R+ � S) in RS+, then�(i�(R+ � S)� f0g) = �i�(S):
This is a general fact about cones.

Proposition 4.1 In P (RS+), the set �i�(S) is relatively compact.

For the proof, we begin by choosing for M a metric � of curvature �1, and

denote by `(�) the �-length of the unique geodesic belonging to the class of� 2 S .

51
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Figure 4.1:

Lemma 4.2 There exists a constant C = C(M;�) such that for all �; � 2 Si(�; �) � C � `(�) � `(�):
Proof. If � = �, we have i(�; �) = 0 and the inequality is clear. Suppose

therefore that � 6= �. Let � be a positive number smaller than the radius of

injectivity of the exponential map. The geodesic g� in the isotopy class � may

be covered by fewer than ( `(�)� + 1) short arcs each contained in a geodesic

disk. The same holds for g� . A small arc of g� cuts in at least one point a small

arc of g� , by the definition of radius of injectivity: therefore, in a small arc ofg�, there are at least ( `(�)� +1) points of intersection with g� . We therefore findi(�; �) = 
ard(g� \ g�) � �`(�)� + 1��`(�)� + 1�
As `(�) > �, the desired inequality is clear.

On M , we now consider the system of elements �1; : : : ; �2g+1 2 S repre-

sented in figure 4.1. In section 3.4, we saw that such a system may be realized

by geodesics g�1 ; : : : ; g�2g+1 .

Lemma 4.3 There exists a constant 
 such that for all � 2 S ,Xj i(�; �j) � 
 � `(�)
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Proof. The system fg�jg decomposes M in a number of simply connected

regions. In each, the length of a geodesic arc is bounded, say by L. Thus, we

have the desired result by taking 
 = 1=L.

Proof.[of Proposition 4.1] For a fixed constant C , consider the subset S(C) �P (RS+), defined byS(C) := �f 2 P (RS+) j 8� 2 S; f(�) � C � `(�)	
By Tychonov’s theorem, S(C) is compact. Now taking C to be the constant of

lemma 4.2, consider S0 � S(C), which is elements in RS+ of the set of func-

tionals of type i�(�)=`(�). By lemma 4.3, we see that S0 � RS+ n f0g. On the

other hand, S0 is compact, thus �(S0) is compact. By lemma 4.3, we have�i�(S) � �(S0); this gives the compactness of �i�(S).
4.2 The space S 0 of multiple curves

As S is difficult to study, we introduce a space which is larger, and easier to

study. Let S 0 = S 0(M) be the space of isotopy classes of closed submanifolds

of dimension 1 (not oriented and not necessarily connected) none of whose

components are homotopic to zero. As in the case of simple curves, we definei(�; �) for � 2 S 0 and � 2 S , as well as i� : S 0 ! RS+ and �i� : S 0 ! P (RS+).
The minimal intersection between a multiple curve and a simple curve is the

sum of the minimal intersections of the different components.

Remark: By the same reasoning as in section 3.3, we may prove that i� is

injective and that two elements �1 and �2 of S 0 are the same image under �i�
if and only if they are integer multiples of the same �0 2 S 0. [That is, one has

a natural map N � S 0 ! S 0.]
Theorem 4.4 In P (RS+), we have�i�(S) = �i�(S 0)

By an application of [???] proposition 4.1, we obtain

Corollary 4.5 In RS+, we have i�(S 0) � i�(R+ � S)
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Proof.[of theorem 4.4] The point is to show that �i�(S) is dense in �i�(S 0). Let� 2 S 0 be represented by a union of pairwise disjoint simple curves �1; : : : ; �k.

We may choose a simple, connected curve 
 such that 
ard(
 \ �j) is equal

to i(
; �j) and non-zero for all j. Let n1; : : : ; nk be positive integers. We shall

construct an element �(n1; : : : ; nk) of S . Each arc of 
 which crosses a small

tubular neighbourhood of �j is replaced by an arc with the same endpoints

making nj positive turns (see figure 4.2 for the case nj = 2.) We obtain by

this construction a curve �(n1; : : : ; nk), well-defined up to isotopy. We prove

in the appendix to this chapter that for � 2 S , we have the inequality���i(�(n1; : : : ; nk); �) �Xj nj � i(
; �j) � i(�j ; �)��� � i(
; �)
Take nj = nQ` 6=j i(
; �)`). We obtain a curve which we’ll denote by �(n);

it follows that���i(�(n); �) � nXj i(
; �j)hXj i(�j ; �)i��� � i(
; �)
That is, when we projectivize and as n tends to infinity, the contributions of 

to the intersection become negligible. Thus all of �i�(�(n)) tends to �i�(�).

α

γ

j

Figure 4.2:

4.3 An explicit parameterization of the space of multiple curves

Recall that P 2 denotes the standard pair-of-pants; the boundary curves are

labeled �1P 2, �2P 2, �3P 2. In section 2.3, we classified the multiple arcs of P 2.
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An element � ofA0(P 2), the space of multiple arcs, is completely characterized

by the three integers mj = i(�; �jP 2) for (j = 1; 2; 3); a triple of integers, not

all zero, describes a multiple arc exactly when m1 +m2 +m3 is even.

In every class of A0(P 2), we choose once-and-for-all a canonical repre- canonical representa-

tive
sentative, as shown in figure 4.3. For each � 2 A0(P 2) and each �jP 2, we

choose an arc xj from the connected components of �jP 2 � � , as in figure 4.3.

This choice is uniquely defined, since (P 2; �) does not admit any non-trivial

orientation-preserving automorphisms.

2
3

1

m m 

Arcs Jaunes

x
j

Legend:

m 1

32

∂

∂

∂

Figure 4.3:

For each model � , we chose an “arc jaune” J1 = J1(�) which has the fol-

lowing properties:
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56 (FLP — Exposé 4: Draft – RCSversion 1.5) May 30, 2002

1. J1 is a simple arc joining �1P 2 to itself and which cuts P 2 into two re-

gions, one of which contains �2P 2, the other �3P 2;

2. J1 has one endpoint in the arc x1(�).
3. J1 has a minimal intersection with � .

Similarly, we construct arcs J2 and J3.

Remark: In chapter 6, we classify the measured foliations on P 2. The models

of figure 4.3 are the “discrete models” for these foliations, where we do not see

any non-singular leaves. Moreover, for the classification of multiple curves,

we follow a procedure analogous to that which we will follow in the classi-

fication of measured foliations: for example the technique of the arc jaunes

which [???] we set to locate the work of gluing the pants together to recon-

struct the surface.

To parameterize S 0, we make a number of choices.

1. We choose 3g � 3 simple curves K1;K2; : : : ;K3g�3, mutually disjoint,

cutting M into 2g � 2 regions diffeomorphic to pants. In addition, we

take theseKi to be connected inM ; in this way, the pairs-of-pantsRj are

embedded in M , that is, each Ki belongs to two distinct pairs of pants.

2. For each Kj , we choose two simple curves K 0j and K 00j as in figure 4.4

(this is possible because of the previous condition); K 0j and K 00j differ by

a positive Dehn twist along Kj (this does not depend on the orientation

of the surface nor that of Kj).
3. We give each Kj a tubular neighbourhood Kj � [�1; 1℄; these are taken

to be pairwise disjoint; the complement of their union is a number of

pairwise disjoint pairs-of-pants R01; R02; : : : ; R02g�2.

4. EachR0j is parameterized by P 2, via diffeomorphisms �j , fixed, but only

up to isotopy.

We consider in R9g�9+ the coneB := f(mi; si; ti) j i� 1; : : : ; 3g � 3; mi; si; ti � 0; (mi; si; ti) 2 �(� r)g:
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Figure 4.4:

It is homeomorphic to R6g�6 (the cone on �(� r) is homeomorphic to R2). We

will construct a classification map �: S 0 ! B.

Let � 2 S 0; we start by defining mj(�) := i(�;Kj). Knowledge of these

integers determines the models of the pairs-of-pants R0k: the corresponding

model for P 2 is carried by the diffeomorphism �k. If the representative �0 of� is chosen with minimal intersection with the boundary of all of the pantsR0k,

then �0jR0k is isotopic to the model. We therefore choose �0 equal to the model

in all of the pairs of pants R0k; we say that this representative is in normal normal form

form. Note that if �0 has a component isotopic to Kj , this is contained in the

annulus Kj � [�1; 1℄.
Lemma 4.6 The normal form of � is “unique”. Precisely, if �0 and �1 are two rep-

resentatives of � in normal form, then, for all j = 1; : : : ; 2g � 2, �0 \Kj � [�1; 1℄
and �1 \Kj � [�1; 1℄ are isotopic relative to the boundary.

Proof. We have need for an extension of proposition 3.13 to the case that one

of the curves is a multiple curve; the proof is analogous. The point is the

following: if 
0 is a component of �0 and if 
1 is the corresponding component

of �1, then there exists an isotopy of M which pushes 
0 onto 
1 and which

leaves invariant all of the curves Kj �f�1g and Kj �f+1g, j = 1; : : : ; 3g� 3.

In reality, it does not hurt the proof of the cited proposition that the [??] rest

is as follows: if 
0 \ Kj � f�1g = 
1 \ Kj � f�1g = ;, then 
0 is isotopic

to 
1 in M � Kj � f�1g. This assertion is true for the “classical” arguments
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(lemma 3.14) except possibly if 
0 is isotopic to Kj . but then, because of the

“normal form” condition, there is nothing to prove.

This being so, in the discussion below, we may replace 
0 (resp. 
1) by the

packet �
0 (resp. �
0) of all of the components of �0 (resp. �1) parallel to 
0 (resp.
1). We may thus fabricate a normal form �00 with the following properties:

1. �00 and �0 are isotopic by an isotopy which respects the curves Kj �f�1g.

2. The packet �
00, corresponding to �
0, coincides with �
1.

Now let Æ0 be a curve in �00 � �
1 and let Æ1 be the corresponding curve

in [???] �1 � �
1. If Æ0 is not parallel to �
1, Æ0 and Æ1 are isotopic in M � �
1.

Always by the same arguments, we find then that there exists an isotopy ofM , constant on �
1 and respecting the curves Kj �f�1g which pushes Æ0 ontoÆ1. We continue in this way with the rest. In the end, �0 and �1 are isotopic,

by an isotopy which respects all of the curves Kj � f�1g.

Now, we claim that the isotopy above may be chosen to be constant in all

of the small pairs of pantsR0j , which will prove the lemma. It is clear that �0\R0j is empty. Otherwise, it is due to the fact that the loops of Di�(P 2; �1; �2; �3)
are all homotopic to zero (see chapter 1.6).

The lemma is essential for the pursuit of the classification. The models�0 \ R0̀ are equipped with their “arcs jaunes”. Consider the curve Kj and

the two adjacent pants R1 and R2. In the small pairs-of-pants R01 and R02, we

have the two arcs jaunes J1 and J2 emanating from the respective boundaries

parallel to Kj . There exists in Kj � [�1; 1℄ simple arcs Sj ; S0j , Tj; T 0j such thatJ1 [ Sj [ J2 [ S0j is isotopic to K 0j and J1 [ Tj [ J2 [ T 0j is isotopic to K 00j . If we

impose the condition that �SJ = �TJ and �S0J = �T 0J , Sj \S0j = ;, Tj \T 0j = ;,

then Sj [ S0j (resp. Tj [ T 0j) is unique up to isotopy relative to the boundary.

On the other hand, Tj [ T 0j is obtained from Sj [ S0j by a positive Dehn twist

in the annulus.

Then, if the endpoints of the arcs are not in �0, this is a way to put the arcs

into a position of minimal intersection with �0. This being done, we put:sj(�) := 
ard(�0 \ Sj)tj(�) := 
ard(�0 \ Tj)
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Lemma 4.7 For each j, the triple (mj(�); sj(�); tj(�)) is an element of the bound-

ary �(� r) of the triangle inequality. [Compare with the classification theorem forS 0(T 2) in chapter .]

Proof. The proof is shown in figure 4.5.Sj Kj � f+1g Tj
Kj � f�1g �0mj = sj + tj tj = mj + sj sj = mj + tj

Figure 4.5: The annulus Kj � [�1; 1℄ is cut along Sj .
Let B0 � B be the set of points 6= 0, with integer coordinates, satisfying

the following additional condition: if Kj1 , Kj2 , Kj3 , are on the boundary of

the same pair of pants, then mj1 +mj2 +mj3 is even.

Theorem 4.8 The map �: S 0 ! B is a bijection of S 0 with B.

Remark: By an analogous procedure, we will classify the measured foliations

and Teichüller structures. In reality, as we will explain, theorem 4.8 above is

strictly contained within the classification theorem for measured foliations.

But the simplicity of the means in this proof [???] leads us to include this

particular case. [In particular, for foliations, one does obtains uniqueness of

the normal form only after a long detour.]

Proof. The image is evidently contained in B0. On the other hand, we have a

recipe to make a multiple curve � from the element fmj ; sj ; tj j j = 1; : : : ; 3g�3g of B0. As in chapter 1.6, the coefficients mj determine the arcs in the small
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pants R0k. Having these, we have also the “arcs jaunes” and hence, for each j,
we get the arcs Sj and Tj in the annulus Kj � [�1;+1℄.

If mj = 0, sj = tj indicates the number of curves of � parallel to Kj .
If mj 6= 0, we already have mj points on Kj � f�1g and on Kj � f+1g;

the coefficients sj and tj determine completely the way in which these are

joined. It remains to verify that the multiple curve constructed in this way

has the property of having minimal intersection with each Kj , that is to say,

that i(�;Kj) = mj ; for this we use the criterion of proposition 3.10.

As soon as Sj and Tj are fixed, �0 \ Kj � [�1;+1℄ is determined, up to

isotopy relative to the boundary, by sj and tj . The injectivity of � follows.

Remark: The members of the seminar do not know how to detect which are

the coefficients of a simple curve.

Obviously, � is homogeneous (of degree 1) by [???] relation to multiplica-

tion by an integer scalar. We may thus extend � by homogeneity, to �: R+ �S ! B.

Corollary 4.9 The map �: R�+ � S ! B is injective.

Proof. If not, there exists �0 and �1 2 S and a scalar � > 0 such that �(�0) =��(�1). It is very easy to see that � is rational. Thus, we have integers n0 andn1 such that �(n0�0) = �(n1�1). By theorem 4.8, we have n0�0 = n1�1. It

follows immediately that �0 = �1.

Problem: Show directly that �(R+ � S) is dense in B. This is plausible since

the (positive) cone on B0 is dense in B. Of course, this is the result of the

following theorem which is the “discrete” version of the theorem on foliations

and which will not be proved until chapter 5.3.2.

Theorem 4.10 There exists a closed cone C in RS+ and a continuous, positive map�C : C ! B, homogeneous of degree 1, which makes the following diagram commute:R+ � S(resp. S 0) -i� C � RS+���R ���	� �CB
Furthermore, �C induces a homeomorphism of i�(R+ � S 0) with B.
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Consequences:

1. �(R+ � S) is dense in B. (use theorem 4.4 and the fact that �(S 0) is a

“network” as well as the continuity and the homogeneity of �C .)

2. The space �i�(S) is homeomorphic to S6g�7.

Remark: The existence of �C signifies that the coefficients of sj(�) and tj(�)
are given by continuous formulas homogeneous of degree 1 as functions of

[???] i(�; �); � 2 S . We give these formulas explicitly in the framework of

measured foliations; they permit the continuous interpolation of the vari-

ables.

On the other hand, as � is injective for all � 2 S , there exists a map � : B0 ! N such that for all � 2 S 0, we have:i(�; �) =  �(�(�))
It appears very difficult to make these formulas explicit.



D
R

A
FT

30
 M

ay
 2

00
2

Chapter 5
Measured Foliations

by A. Fathi and F. Laudenbach

5.1 Measured foliations, the Poincaré recurrence theorem and the
Euler-Poincaré formula.

5.1.1 Definition.

LetM be a surface1 and F a foliation of M with isolated singularities. We call

a measure � defined on arcs transverse to F a transverse invariant measuretransverse invariant

measure
if it satisfies the following property:

If �; � : [0; 1℄ ! M are two arcs transverse to F , isotopic through

transverse arcs whose endpoints remain in the same leaf, then�(�) = �(�).
If the arc passes through a singularity, transversality is understood at each

point where the arc belongs to a regular leaf.

N.B: In the following, we limit ourselves to the case where the measure is reg-

ular with respect to Lebesgue measure: every regular point admits a smooth

chart (x; y) where the foliation is defined by dy and the measure on each trans-

verse arc is induced by dy.

1The theory may be extended to non-orientable surfaces. For simplicity, we will sup-

poseM to be orientable.

62
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5.1.2 Singularities permitted in the interior of M .

For each integer k > 1, consider singularities of the form of the quadratic

holomorphic differential zk dz2. We will consider

Im(pzk dz2) = rk=2�r 
os�2 + k2 ��d� + sin�2 + k2 �� dr�
which is a form of degree 1, well-defined up to sign. This therefore defines a

measured foliation whose origin is an isolated singularity, admitting as sepa-

ratrices the half-lines r � 0; 2 + k2 � = 0mod�.

As models for the singularity we choose a compact domain containing the

origin, delimited by arcs transverse to the foliation (faces) and arcs contained faces

among the leaves of F (sides). sides

Remark. Let ! be a closed differential form of degree 1 on M , (�M = ;),

whose singularities are “Morse” (i.e. generic). Suppose in addition that ! does

not have a center (critical point of index 0 or 2); then ! defines a measured fo-

liation. If it easy to see that a measured foliation is defined by a closed form if

and only if it is transversely orientable in the complement of the singularities.

5.1.3 Singularities permitted in the boundary of M .

The regular points of the boundary are those where the boundary is trans-

verse to the foliation or else those with a neighbourhood in the boundary

which coincides with a leaf.

The singular points admit a chart of the form shown in 5.1 [???] traced on

the upper half-plane if k is even or on the half-plane fz j Re(z) < 0g if k is

odd.

Finally, in this entire work, given a measured foliation (F ; �) on the man-

ifold M , each point of M admits a neighbourhood with a chart foliated iso-

morphically with one of the models in figure 5.1.

N.B: In the chart of a singular point, we will agree that the separatrices belong

to different patches. In this way, inM , each leaf is diffeomorphic to an interval

of R or to S1.
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Figure 5.1:

5.1.4 Good Atlas.

If M is compact, there exists a constant �0 and two closed covers fUjgj2J ,fVjgj2J , by domains of charts, satisfying:

1. M = Sj2J(intUj);
2. For each j 2 J , Uj � Vj and the faces of Uj are contained in the faces ofVj (see figure 5.2).

Figure 5.2:

3. Every point in a side ofUj is a distance at most �0 from the sides of Vj (all

distances are measured along trajectories using the invariant measure�.)

4. The charts Uj do not contain any singular points.

5. The intersection of two charts Uj1 and Uj2 (resp. Vj1 and Vj2) is a rectan-
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gle:

To satisfy the last condition, we chose a line-field transverse to the folia-

tion on the complement of the singularities, and we require that the charts be

sufficiently small and their faces be tangential to the line-field.

5.1.5 The Poincaré recurrence theorem.

Theorem 5.1 (Poincaré) Let M be a compact surface equipped with a measured

foliation (F ; �). Let � be an arc (�= [0; 1℄) on �M , transverse to F at all points ofint(�), and let x be one of its endpoints. Then the leaf Lx issuing from x goes either

to a singular point or to the boundary �M .

Proof. We will use the atlas described in 5.1.4. Suppose that Lx does not end

in a singularity, and truncate � so that �(�) = � < �0, and that, for every y 2 �,

the leaf Ly does not end in a singularity. We claim that if Lx does not meet the

boundary again, then we have an injective immersion �: ��R+ !M , where�(y � R+) = Ly for each y 2 �.

In effect, if P is a patch of Lx in Ui, it is in the boundary of a band ofVi, of width �, which does not contain any singularities, by the hypotheses

on �. If two patches of Lx meet [???] the bands in question glue together by

the properties of an atlas. This gives an immersion. Injectivity holds because��1(�) = � � f0g and for every point of the image of �, this does not pass

through a leaf.

Let z be a point of recurrence of the leaf Lx; if z 2 Ui there exist infinitely

many bands of size �, components of image(�) \ Vi. But two distinct bands

are disjoint. Impossible.

Corollary 5.2 If a leaf L of F is not closed in M � sing(F ), and if � is an arc

transverse to F cutting L, then � \ Ł is infinite.



D
R

A
FT

30
 M

ay
 2

00
2
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Proof. It suffices to show that it is impossible that � \ L be an endpoint of�. For this, we cut M along int� to obtain M 0, equipped with an induced

foliation F 0. If C is the curve of �M 0 arising from �, then F 0 has the configu-

ration shown in 5.3; with the two singularities s1 and s2 corresponding to the

endpoint of �, the two leaves Lg and Ld in F 0 issuing from s1 correspond toL.

Figure 5.3:

By the theorem, Lg (resp. Ld) ends in a singularity of F 0 or on the bound-

ary of M 0. If the boundary is C , by the hypotheses on �, we conclude thatLd = Lg, which implies that L is closed (contradiction). If not, considering M 0
contained in M , Lg and Ld end in a singularity of F or on the boundary ofM ,

hence L is closed (contradiction).

5.1.6 The Euler-Poincaré formula.

Let M be a compact surface equipped with a foliation F having singularities

of the type admitted in figures 5.2, 5.3. We recall that each component of the

boundary is either

(A) transverse to F , or

(B) a cycle of leaves (i.e., a finite union of leaves and singular points).

To each singularity s, we associate an integer PsPs = ( number of separatrices if s 2 intM or if s 2 �M , case (B)

number of separatrices + 1 if s 2 �M , case (A)
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Theorem 5.3 (Euler-Poincaré formula)2�(M) = X
sing(F)(2� Ps)

Proof. We reduce to the case where �M does not have any singularities, fol-

lowing the procedure of figure 5.4. In pushing each singularity from the bound-

ary into the interior in this way, we may conserve the integer Ps assigned to

the singularity by the rules above.

Figure 5.4:

Denote by �0 the set of singular points with an odd number of separatri-

ces, and by �00 the set of singular points with an even number of separatrices;

let � = �0 [ �00. We have an orientation homomorphism of the fibre tangent

to F : �1(M � �)! Z=2:
This defines a 2-sheeted covering which prolongs above �00 and is branched

over �0. We therefore have a branched covering p : fM ! M , where fM is

equipped with an orientable singular foliation eF , which we may think of as

generated by a vector field eX ; if s is a singularity of eF , then Ps is an even

integer and the index of eX in s is �Ps2 + 1. Then, if there is not a singularity

on the boundary, we have�(fM ) = X
sing( eX) indices = X

sing( eF) Ps2 + 1
but�(fM ) = 2�(M)� 
ard(�0) and

X
sing( eF) 1 = 2 � 
ard(�00) + 
ard(�0):
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Thus, if p(s) 2 �00, Ps = Pp(s), but s has a “twin”; if p(s) 2 �0, Ps = 2Pp(s).
Rearranging the equalities gives the desired formula.

N.B. In computations, we must not forget that Ps � 3.

5.1.7 Quasi-transverse curves.

We say that a curve 
 is quasi-transverse to F if every connected componentquasi-transverse

of 
 � singF is either a leaf or transverse to F . Furthermore, in a neighbour-

hood of a singularity, a transverse arc is not in a sector adjacent to an arc

contained in a leaf (figure 5.5) and two transverse arcs are in two distinct sec-

tors.

Figure 5.5:

Proposition 5.4 There does not exist a disk D, with angular boundary, with �D =� [ �, where � is an arc contained in a leaf and � is a quasi-transverse arc.

Proof. Suppose that such a disk exists. Let N �= D2, the double of D along �;N is given a foliation (with possible singularities). But now �(N) > 0, which

contradicts the Euler-Poincaré formula.

Remark. In the same way, we see that a closed, immersed curve quasi-transverse

to F is not homotopic to zero.
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5.2 Measured foliations and simple curves

5.2.1 Notation.MF(M), or simply MF if there is no danger of ambiguity, designates the set

of measured foliations, possibly with singularities, defined on a given com-

pact surface M , quotiented by the two following equivalence relations:� isotopy;� Whitehead operations

(more precisely, if the two singularities lie on the boundary, we do not

contract if the connecting leaf is on the boundary.)

Recall that S designates the set of homotopy classes (= isotopy classes) of

simple closed curves, piecewise C1, not homotopic to zero or to a boundary

component.

5.2.2 The map I� : MF ! RS+.

Let (F ; �) be a measured foliation and 
 a closed curve. We set�(
) := sup(P�(�i))
where �1; : : : ; �k are the arcs of 
, mutually disjoint and transverse to F , and
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where the supremum is taken over all sums of the given type. In other words,�(
) is the total variation of the coordinate y along 
 in an atlas which defines

the measured foliation. This quantity is also denoted by Thurston as
R
 F .

Let � be an element of S ; we setI(F ; �;�) := inf
2� �(
)
This is clearly an isotopy invariant; on the other hand, if (F ; �) and (F 0; �0)
are related by a Whitehead move, then for each curve 
 2 � and each � > 0,

there exists 
0 2 � such that j�(
)� �0(
0)j < � (figure 5.6).

Figure 5.6:

This is enough to ensure that the formula below defines a map:I� : MF ! RS+hI�(F ; �); �i := I(F ; �;�)
5.2.3 The measure of quasi-transverse curves.

Proposition 5.5 If 
 is quasi-transverse to F , then�(
) = I(F ; �;�)
where � is the homotopy class of 
.

Proof. Let 
0 2 �; if 
 and 
0 are disjoint, 
 and 
0 cobound an annulus A. By

the Poincaré recurrence theorem (theorem 5.3), almost every leaf re-enteringA in a point of 
 meets the boundary again. By index considerations (propo-

sition 5.4), it may not meet 
 again. Hence �(
) � �(
0).
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If 
 and 
0 have points in common, we proceed as follows. We begin by

putting 
0 in general position with respect to 
, in the sense that 
0�
 does not

contain a finite number of open intervals. This may be done in a way which

perturbs the measure by an arbitrarily small amount. Then if 
 and 
0 are

homotopic, there exists an arc �0 in 
0 and an arc � in 
 such that int�\int�0 =; and which bound a diskD (proposition 3.10). Almost every leaf re-entrant inD in a point of � meets the boundary again. Thus �(�) < �(�0). If 
0 = �0[�0,
we may form 
00 = �00 [ �00, with �00 = � and �00 = �0. We have �(
00) � �(
0)
and �0(
00 � 
) < �0(
0 � 
). Thus, by induction on �0(
0 � 
), we prove that�(
0) � �(
).

To find the classes of S which contain quasi-transverse curves, we require

the following lemma concerning the holonomy map.

5.2.4 Stability Lemma.

Let 
 be an arc (arc = compact arc) in a leaf, and let �; � be two disjoint trans-

verse arcs, each starting from an endpoint of 
, both in the same side. Denote

by Lt the leaf meeting �(t); �(0) and �(0) are the endpoints of 
 in L0. We

chose the parameterization in such a way that�([�(0); �(t)℄) = �([�(0); �(t)℄) = t:
There exists a function germ for the holonomy maphy : (�; �(0)) ! (�; �(0))
characterized by the following property: h
 is continuous and if h
(�(t)) is

defined, we have h
(�(t)) 2 Lt; the invariance of the measure � implies thath
 is an isometry, that is to say, that h
(�(t)) = �(t); we denote by f
tg the

continuous family of arcs, such that 
0 = 
, 
t 2 Lt, and 
t joins �(t) to �(t).
Lemma 5.6 (Stability) If h
 is defined in the half-open interval [�(0); �(t0)), then

the points �(t0) and �(t0) are joinable by an arc 
t0 which is contained in a union

of a finite number of leaves and singular points and which is the limit of the arcs
t; t 2 [0; t0).
Furthermore, there exists an immersion H : [0; 1℄� [0; t0℄!M which is C1 on

the interior and such that we have H([0; 1℄ � ftg) = 
t for all t 2 [0; t0℄.
The obstruction to prolonging h
 beyond �(t0) is due to the following situations:
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Figure 5.7:� �(t0) (resp. �(t0)) is an endpoints of � (resp. �)� 
(t0) contains a singularity.

Proof. We use the good atlas of 5.1.4, and the notation Uj , Vj , �0. We may

clearly reduce to the case where t0 < �0, where the arc [�(0); �(t0)℄ is con-

tained in a chart Vj0 and where the arc [�(0); �(t0)℄ is contained in a chart Vj1 .

We then cover 
0 by the chartsU0 = Uj0 ; U1; : : : ; Un = Uj1 , the labelling is cho-

sen in such a way as to give for each i a patch P 0i of Ui, contained in Ui \ 
0,

satisfying P 0i \ P 0j = ;, except when jj � ij = 1; clearly, the labelling may go

back many times to the same chart.

Consider the union X0 = SfP t0 j t 2 [0; t0℄g of patches of V0 which cut[�(0); �(t0)℄; the eventual singularity of V0 may not be found on the patch P t00
otherwise the holonomy map will not be defined on [�(0); �(t0)). If we pass

to the chart V1, we find an intersection X0 \ V1 which is a rectangle of widtht0, by the properties of a good atlas. We construct the union X1 of patches ofV1, which meet X0 \ V1 and we continue in this way for the rest.

Remarks.

(1) The lemma requires the invariant measure; figure 5.8 is a counter-

example in the case where there is non-trivial holonomy:

(2) The lemma remains true if 
0 passes through singularities whose sep-

aratrices are on sides opposite from � and �.

Corollary 5.7 We suppose that M is not the torus T 2. Let 
 be a cycle of leaves;

either 
 passes through singularities and there exist separatrices on both sides of 
, or
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Figure 5.8:
 belongs to a “maximal annulus” A whose interior leaves make cycles; a component

of �A which is not in �M is a singular cycle.

Proposition 5.8 Let 
 be a simple closed (connected) curve on the surface M , and(F ; �) a measured foliation. If 
 separates M into two components, M =M1[
M2,

we denote by �i (i = 1; 2) a spine of Mi (i.e., a 1-complex onto which Mi collapses). spine

1. If I(F ; �; [
℄) 6= 0, there exists (F 0; �0), equivalent to (F ; �), such that 
 is

transverse to F 0 and avoids the singularities.

2. If I(F ; �; [
℄) = 0, there exists (F 0; �0), equivalent to (F ; �), satisfying one or

the other (or both) of the following two conditions

(a) 
 is a cycle of leaves of F 0;
(b) 
 separates, and for i = 1 or i = 2, �i is an invariant set of F 0.

This situation may not occur that if the set of links [???] between the leaves

has cycles.

Remarks. (1) If we forbid modification of F , we obtain only the much weaker

result that 
 is homotopic to an immersion quasi-transverse to F . Moreover,

this immersion is a limit of embeddings.

(2) Figure 5.9 illustrates the situation of case 2.(b) of the proposition. The

foliation of the surface of genus 2 is obtained by “stretching” the curve C (see

section 5.3).

We will simultaneously show the following criteria, which will be useful

later on.

Minimality Criteria. The following two assertions are equivalent:
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Figure 5.9:

1. �(
) > I(F ; �; [
℄);
2. There exist two points x0 and x1 of 
 belonging to the same leaf L in

such a way that:� x0[x1 = �
;where 
 is an arc of L,= �
0;where 
0 is an arc of 
� 
 [ 
0 = �D;where D is a 2-disk.

Proof. We may suppose that 
 = �1 � �1 � � � � � �n � �n, where the arcs �i
are transverse to F and the arcs �j , eventually reduced to a point, are in a

finite union of leaves and singular points; the labelling is cyclic. If we do not

begin with such a decomposition, we either obtain one in each chart by an

isometric isotopy, or there exists a chart in which the second conclusion of

the criterion is visible and a correction shortening the length leads to a finite

decomposition.

This done, we have for �k the configuration shown in figure 5.10. By defi-

nition, (1) is the configuration for which lemma 5.6 applies. In (2) and (3), �k
contains at least one singularity, and lemma 5.6 is not applicable; in (4), �k
does not contain any singularities.

In (1), the conclusion of the second criterion is visible. On the other hand,

we claim that, if for all k, �k is not in configuration (1), then 
 is isotopic to a quasi-

transverse curve of the same length; that is to say, �(
) is minimal by 5.5, and

the claim proves the minimality criterion. To prove the claim, we replace each

configuration of type (4) by a transverse arc; the configurations (2) and (3) are

modified as in figure 5.11.
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Figure 5.10:

Figure 5.11:

We will now give the proof of the proposition. As in the proof above, the�k of type (4) are replaced by transverse arcs, and those of types (2) and (3)

may be supposed to have singularities as endpoints.

At this point, either 
 is a cycle of leaves (conclusion 2.(a) of the propo-

sition), or we may concentrate in a point each leaf contained in 
. By then

resolving [???] the singularities obtained (figure 5.12), we reduce to the situa-

tion where all of the arcs �k are of type (1). From this, the induction is made on

the number of arcs of 
 contained in a leaf. When there are none, 
 is trans-

verse to the foliation (conclusion 1.)

If not, consider �1. Lemma 5.6 gives an immersion h of a rectangle R. The

induced foliation F̂ = h�1(
) has all of its singularities in the same arc � of the

boundary. Denote by �̂1; : : : ; �̂m the arcs of 
̂ = h�1(
), which are in the leaves

of F̂ (horizontal arcs). Say that �̂1 is the closest arc to the singularities (in the
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Figure 5.12:

sense of the transverse measure); then the component of 
̂ which contains�̂1, bounds a sub-rectangle R0 which is minimal; we see that hj int(R0) is an

embedding disjoint from 
.

Figure 5.13:

If R0 does not contain any singularities of F̂ , a neighbourhood of h(R0) is

the support for an isotopy of 
 which pushes out �̂1; also if h(�̂1) = �1, the

application of this isotopy leads to a situation where, in the new rectangle R
associated with �1, the new arc 
̂ has fewer horizontal arcs.

If R has one singularity, then, because of the transverse measure, it is easy

to see that h(�̂1) is an arc �k distinct from �1 (if not, the width of R0 becomes

the same as that of R).

By the reasoning above, perhaps after cyclically re-labelling the arcs, we

may suppose that:

1. hjR� � is an embedding,

2. hj int(R) \ 
 is empty,

3. h(�) \ �k is empty, for all k.
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Inserting first the following simple cases (A) and (B), where we see the

operations of isotopy and Whitehead moves, which reduce the number of

arcs of 
 contained in a leaf.

(A) � does not contain a singularity.

See figure 5.14.

Figure 5.14:

(B) � contains singularities and R is embedded.

The isotopy across R replaces �1 with an arc of type (2). We apply to it the

procedure from the beginning [???].

This case makes allowances [??? mis à part...] that h(�) has double points.

Seen as a singular path, � is written as a composite:� = �0 � �1 � � � � � �q � �1
where �0 (resp. �1) is an arc of a leaf joining a point of �1 (resp. �2) to a sin-

gularitym and where �i (1 � i � q) is an arc of a leaf joining two singularities;

certain of these arcs may be reduced to a point and several may belong to the

same leaf. However, � has in R an approximation which is an embedded arc

missing �1 and �2 at its endpoints. Because of this, each leaf carries at least

two arcs of �. More precisely, neither �0 nor �1 may belong to the same leaf

[??? as] �j ; if �0\�1 is not reduced to one of their endpoints, it is that �1 = �2
(i.e., 
 = �1 � �1) and that we have the configuration of figure 5.15.

We say that �j is simple if, for every j0 6= j, �j does not cover the same leaf simple

as �0j . We say that �0 and �1 are simple if one does not have the configuration

of figure 5.15 ([???] it is then compelled on the other).
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Figure 5.15:

Denote by � the complex of dimension 1� = q[i=0 �i
this is an invariant set of the foliation F . If M is closed, each Whitehead slide

of � lifts to Whitehead moves of F (the terminology for foliations was chosen

owing to this remark.)

Lemma 5.9 We suppose that M is closed. If one of the arcs �i, �0, �1 is simple,

there exists a foliation F 0 equivalent to F and equal to F in the complement of a

neighbourhood of �, and for which the limiting arc �0 of the domain of deformation ofR0 of �1 possess fewer double simplexes (edge or vertex).

Proof. We slide the simple arc on its predecessor or on its successor. Fig-

ure 5.16 represents this operation when �0 is simple.

If the lemma is applicable, we reduce by iteration to case (B), if not, we

find ourselves in the following situation.
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Figure 5.16:

(C) All of the arcs �i, �0, �1 are double.

Then the support of R, on the surface, is a regular neighbourhood of the

complex � and 
 is its boundary; we thus have the conclusion 2.(b) of the

proposition.

The proof of the proposition is completed by induction on the number of

segments of the decomposition of 
, all as long as M is closed. The case for

surfaces with boundary is made analogously, paying attention to the White-

head slides permitted.

Remark. The preceding proposition does not admit the reasonable general-

ization to the case of a system with k embedded curves 
1; : : : ; 
k; except

when I(F ; �; [
1℄) 6= 0; : : : ; I(F ; �; [
k�1℄) 6= 0; I(F ; �; [
k ℄) maybe null.

5.3 Curves as Measured foliations

5.3.1 The “stretching” procedure.

Let M0 be a sub-manifold of dimension 2 in M , such that M �M0 does not

have any contractible components. Let � be a spine of M �M0; by hypoth- spine

esis, none of its components are contractible. Thus, perhaps after collapsing

the 1-simplices which have a free vertex, each singularity of � involves three

branches.

We may construct a surjective map j : M0 !M such that� j is a (piecewise differentiable) immersion.
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Figure 5.17:

Let F0 be a measured foliation on M0 such that each component of �M0��M is an invariant set. We may then define F := j�F0 which is a measured

foliation on M satisfying� � is an invariant set of F .� jj int(M0) conjugates between the measured foliations F0j int(M0) andFj(M � �). We say that F is obtained from F0 by stretching M0.

We observe that if �0 is another spine of M �M0, then �0 is obtained from� by Whitehead operations and isotopies (see appendix B). We conclude that

the class of F does not depend on that of F0. We therefore may define a mapMF(M0; �M0 = �M)!MF(M)
for which the domain is the subset of MF(M0) formed from the foliations

admitting every component of �M0 � �M as an invariant set.

Lemma 5.10 Let �0 and �1 be transverse invariant measures for F0 and F . Let 
 be

a simple curve in M . Then I(F ; �; [
℄) = inf �0(
0 \M0), where 
0 is isotopic to 
.

Proof. This follows from the observation that for each curve C , there exists a

curve C 0, isotopic to C , such that C 0 \M0 = j�1(C).



D
R

A
FT

30
 M

ay
 2

00
2
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5.3.2 The inclusion R+ � S ,!MF .

We will define the inclusion R+ � S ,! MF as follows. Let C 2 S , � 2R�+. Consider a tubular neighbourhood M0 of C which we foliate by circles

parallel to C ; we equip this with an invariant transverse measure �0 such that

the width of the annulus M0 is �. This measured foliation of M0 is unique up

to isotopy. We denote by F�;C a foliation obtained in this way, and by � its

transverse measure.

Proposition 5.11 Let 
 be a simple curve in M . Then we haveI(F�;C ; �; [
℄) = �i(C; 
)
Proof. Let � be a component of 
 \M0. If � goes to one boundary or the other

of M0, then �0(�) � �. We deform � by isotopy so as to be transverse to the

foliation; then �\C = 1 point and �0(�) = �. If � does not touch a component

of the boundary, then 
 is isotopic to 
0 whose intersection with M0 has one

less component. Applying the preceding lemma, we have the inequalityI(F�;C ; �; [
℄) � �i(C; 
):
The equality is obtained by considering the case where 
 has minimal inter-

section with C , for then �0(
) = �i(C; 
):
The proposition above indicates that the following diagram commutes:R�+ � S !MF

As i� is injective (by proposition 3.18), R�+ � S !MF is also an injection.
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Measured Foliations, Continued

by A. Fathi
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Chapter 7
Teichmüller Space

by A. Douady

Notes by F. Laudenbach

Given a compact surface M of Euler characteristic �(M) < 0, we consider the

space H of metrics of curvature �1 on M , which make the boundary of M
geodesic; H is non-empty, and is given the C1 topology of all fields of co-

variant tensors. The group Di�0(M) of diffeomorphisms of M isotopic to the

identity, equipped with the C1 topology, acts on the left on H by the general

formula obtained from the naturality of the field of covariant tensors m 2 H,� 2 Di�0(M)! ��m 2 H. The quotient space T := H=Di�0(M) is the Teich- Teich

müller space
müller space of M ; when M is orientable, this definition coincides with the

classical definition as the “space of complex structures, up to isotopy”, via the

uniformization theorem [Spr66]. It is known that this space is homeomorphic

to a “cell” [FK98]; Earle and Eells have shown that H is the total space of a

principal fibration over the Teichmüller space [EE69].

Our programme here is to establish a parameterization of the Teichmüller

space which depends only on the lengths of the simple closed geodesics.

Recall that S is the set of isotopy classes of simple closed curves not ho-

motopic to zero in M . If m is a hyperbolic metric, for � 2 S , `(m;�) is the

length of the unique geodesic in the isotopy class of �. This defines the map`� : T ! RS+
by the formula h`�(m); �i := `(m;�).

83
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Proposition 7.1 For a fixed � 2 S , the map which associates to m 2 H the m-

geodesic in the class � is continuous in the C1 topology.

Corollary 7.2 The map `� is continuous.

Proof. Clear

Proof. [of proposition 7.1.] One method of proof employs convexity proper-

ties of the “displacement function” (the Bishop-O’Neill Theorem [BO69]; see

the paper by Bourguignon in [Bou85]). We give a different proof.

Let � be the set of pairs (m; 
) wherem is a hyperbolic metric and 
 : S1 !M is a constant speed parameterization of the m-geodesic of �. We give � the

topology induced from the C1 topology on the product spaceH� C1(S1;M):
Consider the projection p : � ! H onto the first factor. We wish to show thatp is proper.

We denote by TM the manifold of tangent vectors to M , and consider inH� TM the setC := f(m; v) j 8t; expm(t+ 1)v = expm tv
and the closed curve t 2 [0; 1℄! expm tv is in the class �gC is closed in the product topology onH�TM . IfS1 is obtained by identifying

the endpoints of [0; 1℄, one has the obvious map C ! � which is surjective;

by a theorem on differential equations, it is continuous. The properness ofp follows from the fact that the projection q : C ! H is proper, as we shall

prove.

We know that m 2 H 7! `(m;�) is an upper semi-continuous function.

Hence if m belongs to a compact setK , the set f`(m;�) j m 2 Kg is bounded.

Let (m; v) 2 q�1(K); the quantity
pm(v; v) = `(m;�) is then bounded. Ifm0 2 K , there exists � > 0 such that, for all w 2 TM , and all m 2 K , one hasm0(w;w) � �m(w;w):

Thus if (m; v) 2 q�1(K), m0(v; v) is bounded. Finally, q�1(K) is compact,

since it is closed in a product of compact sets.
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The group O(2) of rotations acts naturally on �: for r 2 O(2), (m; 
) � r =(m; 
 Æ r). The quotient is the space of m-geodesics of �, m 2 H. In negative

curvature, p induces a bijection �=O(2)! H, which, by the above, is continu-

ous and proper. Since the spaces considered are metrizable, the inverse is also

continuous.

From now on, we suppose that M is without boundary, in order to sim-

plify our presentation. Let g be the genus of M . We fix a decomposition K
of M into pairs of pants Ri, i = 1; : : : ; 2g � 2, bounded by curves Kj ; j =1; : : : ; 3g � 3. Every pair of pants is given with a parameterization by a mod-

ulus, and every curve Kj is given with an orientation. We have a continuous

map L : T ! (R�+)3g�3
defined by L(m) := `(m;Ki); (i = 1; : : : ; 3g � 3), where m is a hyperbolic

metric making theKi’s geodesic (a so-called metric adapted to the decompo- metric adapted to the

decomposition
sition.)

Remark. From now on,H denotes the space of metrics adapted toK. One sees

easily that T is bijective with the quotient of H by Di�(M;K) \ Di�0(M). To

see that the topology is the same, we use proposition 1 and the fact that the

action of Di�(M) on the space of simple curves admits local sections [Pal60].

The twist along the curves Ki defines a continuous action � of R3g�3 on twistT . More precisely, let Ki � [0; 1℄ be a collar for Ki = Ki � f0g, given once and

for all; we suppose all of the collars are pairwise disjoint. Given an adapted

hyperbolic metric m and a number �, there is a diffeomorphism �i(m;�) of

the collar Ki � [0; 1℄ with the following properties:

1. �i(m;�) is the identity on a neighbourhood of Ki � f1g;

2. �i(m;�) is an isometry for m in a neighbourhood of Ki � f0g;

3. The lift of �i(m;�) to the universal covering R� [0; 1℄ which is the iden-

tity on R�f1g is a translation of length �`(m;Ki) on R�f0g, in the sense

indicated by the sign of � (the universal covering is given the lifted met-

ric).
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The twisted metric �i(m;�) is defined by �i(m;�) = ��i (m;�)m for points

of the collar Ki � [0; 1℄ and by �i(m;�) everywhere else.

For (�1; : : : ; �3g�3) 2 R3g�3, let �(m;�1; : : : ; �3g�3) be the metric defined

by �1(m;�1) in K1 � [0; 1℄; : : : ; by �3g�3(m;�3g�3) in K3g�3 � [0; 1℄, and m
elsewhere. Because of the adapted metric, its isotopy class is well defined.

Remarks. (1) As in the classification of metrics on pairs of pants (exposé 3),

the orbits of the action � coincide exactly with the fibres of L. The corollary of

proposition 2 implies that this action is free.

(2) The Dehn twist along Ki, which is a global diffeomorphism of the sur-Dehn twist

face supported in a collar of Ki, is an isometry (up to isotopy) for the metric�i(m; 1) on m. One therefore has, for all curves K 0,`(�i(m; 1); [K 0℄) = `(m; �([K 0℄)):
LetR and R0 be the two pairs of pants adjacent to Ki; suppose that R con-

tains the collar Ki� [0; 1℄. LetK 0i be a simple curve in R[R0 cutting Ki in two

essential points (K 0i is not isotopic to a curve disjoint from Ki.) — compare

with section 4.4 of exposé 6. Let K 00i denote the curve in R [R0 obtained fromK 0i by a Dehn twist along Ki: K 00i := �(K 0i).
Proposition 7.3 The length `(�i(m;�); [K 0i ℄) is a strictly convex function of �,

which takes a minimum.

Corollary 7.4 (1.) Given the metric m0, there exists an isotopy class 
i in R [ R0
such that the function � 7! `(�i(m0; �); 
i)
is strictly increasing for � > 0.

(2.) The length `(�i(m;�); [K 0i ℄) tends uniformly to +1 as � tends to +1 or�1 and m remains in a compact set.

Proof of corollary. (1.) Suppose that `(�i(m;�); [K 0i ℄) is increasing from� = k, where k is an integer. We then take 
i = �k([K 0i℄) and apply remark (2)

above.

(2.) This is a general property of families of functions of a real variable

which are strictly convex and take a minimum, and which depend contin-

uously on a parameter (in the compact open topology). Let f�(x) be such a
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Figure 7.1: Proof of lemma 7.5

family, and let x = m(�) be the point where the functions realize their mini-

mum. Thenm(�) is a continuous function. In effect, given �, if � is sufficiently

near to �0, one hasf�(m(�0)) < inf[f�(m�0 � �); f�(m�0 + �)℄;
thus m(�) belongs to the open interval ℄m(�0) � �;m(�0) + �[. Now let x0 >m(�0) and let K lie between f�0(m(�0)) and f�0(x0). Then if � is sufficiently

close to �0, one has f�(x0) > k and f� is strictly increasing on [x0;+1℄; thusf�([x0;+1)) � ℄k;+1).
Proof of proposition.

Lemma 7.5 Let 
 be a line in the Poincaré half-plane, and let � be an isometry leav-

ing 
 invariant. Let x be a point of 
 and y a point not on 
. Thend(x; �x) < d(y; �y);
where d denotes hyperbolic distance.

Proof. One may take for x the base of the perpendicular � to 
 passing

through y. Then 
 is the unique common perpendicular of � and ��. This

gives the inequality.

Lemma 7.6 Let 
1 and 
2 be two lines which do not intersect in hyperbolic space.

The function d(x; y), x 2 
1, y 2 
2, is strictly convex.
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Proof. Let x; x0 (resp. y; y0) be two points of 
1 (resp. 
2); without loss of

generality, suppose that x 6= x0. Let i be the middle of the arc xx0, j the middle

of yy0, Æ the geodesic ij. Denote by �i (resp. �j) the symmetry with respect to i
(respectively j); �j�i is an isometry which leaves Æ invariant. Let z = �j�i(x),z0 = �j�i(x0), k = �j�i(i). Then �j takes x to z0 and y to y0. Therefored(x; y) = d(y0; z0):
The triangle inequality givesd(x0; z0) � d(x0; y0) + d(y0; z0):
By lemma 1, one has 2d(i; j) = d(i; k) < d(x0; z0):
(Note that 
1 does not cut 
2, hence the point x0 is not on Æ). Finally, we obtain

the inequality giving convexity:2d(i; j) < d(x; y) + d(x0; y0):
Conclusion of proof of prop. 2

Since the surface given is equipped with the metric m and its universal

covering is identified with the hyperbolic space H 2, there exists an element �
of �1(M; �) which acts as an isometry on H 2, leaving invariant a line Æ, which

is the lift of the geodesic K 0i. Let x be a point of Æ projecting to a point ofK 0i \Ki; denote by fK1 the lift of Ki by x and let fK3 denote the lift by �x. The

segment (x; �x) cuts exactly another lift fK2 of Ki in a point y. In figure 7.1,

we show the orientations which are given the three lifts.

If one twists the metric by an angle � in the collars indicated in figure 7.2,

the lift of the �i(m;�)-geodesic of [K 0i℄ cuts fK1 in a point x0 and fK2 in y0; it

is a line from x0 to y0 with the metric of the hyperbolic plane; but from y0 to�x0 its length is the hyperbolic distance d(y0+�; �x0+�); in this formula, “+”

designates the translation along the geodesics fK2 and fK3. Finally, one has`(�i(m;�); [K 0i ℄) = infx2fK1;y2fK2(d(x; y) + d(y + �; �x+ �)):
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Figure 7.2:

We now show that f(x; y; �) := d(x; y) + d(y + �; �x + �) is a proper,

strictly convex function. For this, we use the fact that d(x; y) is proper, because

the lines on which the points are moved have a common perpendicular (at a

finite distance), and by lemma 2 it is strictly convex.

To show that f is proper, let (xn; yn; �n) ! 1; if (xn; yn) ! 1 thend(xn; yn) ! +1; hence f(xn; yn; �n) ! +1. If (xn; yn) remains in a compact

set, then�n !1 and (yn+�n; �xn+�n) tends to1, hence d(yn+�n; �xn+�n)
tends to +1.

One verifies immediately that f is strictly convex.

For � fixed, the function f(x; y; �) has a minimum g(�) since f is proper.

The convexity of f implies that g is also convex; since g(�) is a value attained

by f(x; y; �), one verifies that g is strictly convex.

The function f has an absolute minimum (f is proper and bounded below;

it is the minimum of g.)

Proposition 7.7 The map L : T ! (R�+)3g�3 is a principle fibration of the groupR3g�3 acting by �.

Corollary 7.8 The Teichmüller space of a closed surface of genus g is homeomorphic

to R6g�6.

Proof. The important point is to show that there exist local sections for L.

We know from theorem 5 in exposé 3 that, for the pair of pants P 2, the mapH(P 2)! (R�+)3
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(which associates to a metric adapted to the boundary the lengths of the three

boundary components) admits local sections at the level of the metrics.

We know that to glue together two hyperbolic metrics along a geodesic, it

is enough to specify an isometry of the geodesic along which we glue. Now

if one has a metric on P 2 and if one considers a curve C on the boundary,

one has a unique geodesic arc without a double point which meets C in its

two endpoints (an arc jaune1). By proposition 7.1, its origin (which one dis-

tinguishes from the other endpoint by an orientation chosen once and for all)

varies continuously with the metric.

The sought-for local section may now be obtained. Above the 3g�3 lengths

one chooses a metric with the following property: if Kj is adjacent to Ri1 andRi2 the two origins on Kj of the arcs jaune of the two pairs of pants coincide.

In imposing this condition, we obtain a continuous local section.

LetD be a ball of (R�+)3g�3 over which L admits a section �. Define a mapT : D � R3g�3 ! T byT (x; �1; : : : ; �3g�3) := �(�(x); �1; : : : ; �3g�3)
It remains to show that T is a homeomorphism onto its image. Since T has

a countable neighbourhood base, it is enough to show that T is injective and

proper.

If the two metrics differ only by a twist, they are distinguished by a length

of a geodesic (corollary to proposition 2); this proves injectivity.

To simplify notation, let (�1; : : : ; �3g�3) be written as �. Let (xn; �n) be a

sequence tending to infinity in D � R3g�3. The second part of the corollary

just cited forbids that the image under T of this sequence be a compact set in

Teichmüller space. Hence T is proper.

Theorem 7.9 The map `� : T ! RS+ is a proper map which is a homeomorphism

onto its image.

We will actually prove a much stronger proposition, in terms of the system

of curves Ki;K 0i;K 00i introduced in the preamble to proposition 2.

1Compare with the terminology of measured foliations (exposé 6).
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Proposition 7.10 The map �: T ! R9g�9+ which associates to the point m 2 T
the triple (`(m; [Ki℄), `(m; [K 0i℄), `(m; [K 00i ℄)) is injective and proper (hence a hom-

eomorphism onto its image).

Proof. We choose a section s of the fibration L; that is, we write everym 2 T in the form m = �(s(x); �)
where � = (�1; : : : ; �3g�3) 2 R3g�3 is a “multi-angle” of twist, and wherex 2 (R�+)3g�3 is the system of lengths of the curves Ki.

The variable x being fixed, the function `(m; [K 0i℄) is a strictly convex,

proper function gi(�i) of the i-th component of �; furthermore, `(m; [K 00i ℄) =gi(�i + 1).
Lemma 7.11 If g : R ! R is a strictly convex proper function then t 7! (g(t); g(t+1)) defines a proper immersion of R into R2.

Thus the (6g�6)-system (`(m; [K 0i℄); `(m; [K 00i ℄)) is an injective proper function

of the multi-angle �. From this, it follows that � is injective.

To show that � is proper, we consider the sequence (xn; �n) tending to1.

If xn tends to1, it is clear that �(xn; �n) tends to1; otherwise xn remains in

a compact set and by corollary 7.4, the length of one of the curves K 0i tends to

infinity.

We complete the theorem by the following proposition, following a proof

indicated by S. Kerckhoff. Recall that � denotes the projection RS n f0g !P (RS).
Proposition 7.12 The composite map � Æ `� : T ! P (RS+) is an injection.

Proof. We take for H 2 the half-plane model of Poincaré: fx + iy j y >0g, with the metric ds := dx2+dy2y2 . The group of isometries is SL(2;R)=f�Idg
where the action of A =  a b
 d ! is given by z 7! az+b
z+d .

If A is a hyperbolic element (i.e., it leaves invariant a geodesic), we define

the displacement displacement`(A) := infz2H 2 d(z;A � z)
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The minimum is attained on the invariant geodesic.

Lemma 7.13 If A 2 SL(2;R) is hyperbolic, one has:Tr(A) = 2 
osh(`(A)2 )
Proof. By conjugating within SL(2;R) we reduce to the case where the

invariant geodesic is the y half-axis. One then hasA =  � 00 ��1 ! ; � > 0
Consequently,A � i = �2i. Thus, we have`(A) = d(i; �2i) = Z �21 dtt = 2 log(�)
and Tr(A) = �+ ��1 = 2 
osh(`(A)2 )
Lemma 7.14 Let A;B 2 SL(2;R). One hasTr(A) � Tr(B) = Tr(AB) + Tr(A�1B)
This follows from a direct calculation.

Consider on the surface M two simple oriented curves 
1 and 
2 which

intersect transversely in a base-point.

We may hence speak of the homotopy classes of the pointed loops 
1 �
2 and 
�11 � 
2; both are representable by simple curves 
3 and 
4. If M is

given a metric m of curvature �1, these elements of the fundamental group
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correspond to hyperbolic isometries of H 2 for which the displacement is `i :=`(m; [
i℄). The preceding lemmas thus give the formulas2 
osh(`12 ) 
osh(`22 ) = 
osh(`32 ) 
osh(`42 )
and 
osh(`1 + `22 ) + 
osh(`1 � `22 ) = 
osh(`32 ) + 
osh(`42 ) (7.1)

(H) Suppose that there is another metric of curvature�1 for which the lengths

of all closed geodesics are multiplied by k 6= 1. For this metric, the equality ??

changes to
osh(k `1 + `22 ) + 
osh(k `1 � `22 ) = 
osh(k `32 ) + 
osh(k `42 ) (7.2)

Lemma 7.15 Let �; �; 
; Æ be four non-negative numbers and let k > 0; k 6= 1. The

relations 
osh�+ 
osh� = 
osh 
 + 
osh Æ
osh k�+ 
osh k� = 
osh k
 + 
osh kÆ
imply that f�; �g = f
; Æg.

Proof. One may restrict to k > 1. The reader may check that the function
osh(kArg 
osh x) is a strictly convex function of x. Then, if 
 is a common

value of the first inequality and if one sets x = 
osh�; y = 
osh 
, the second

relation is 
osh(kArg 
osh x) + 
osh(kArg 
osh(
� x))= 
osh(kArg 
osh y) + 
osh(kArg 
osh(
� y))
One may suppose that y � x � 
� x � 
� y. If y < x, by strict convexity, the

left side is strictly less than the right.

Consequently, (??) and (??) givef`1 + `2; `1 � `2g = f`3; `4g
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By a change of notation, we may write`3 = `1 + `2
Since the angle between 
1 and 
2 is nonzero, it is not possible for `1 + `2
to be a shorter distance; hence, the above inequality can’t be true, and the

hypothesis (H) is absurd.
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Thurston’s Compactification of Teichmüller
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by A. Fathi and F. Laudenbach
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Chapter 9
Classification of Surface Diffeomorphisms

by V. Poénaru

9.1 Preliminaries

Let M be a closed, orientable surface of genus g > 1. Its compactified Teich-

müller space TM is homeomorphic toD6g�6. The natural action of �0(Di�(M))
on M and PMT (M) combine to give a continuous action onTM = TM [ PMF(M)
Let ' 2 Di�(M) and let ['℄ be its isotopy class. By Brouwer’s fixed point

theorem, there is an x 2 TM such that ['℄ � x = x.

If x is an element of TM , then x gives a hyperbolic metric on M , well-

defined up to isotopy, and ' is isotopic to an isometry in this metric. By theo-

rem ?? in exposé 3, ' is isotopic to a diffeomorphism of finite order.

If x belongs to the boundary of M , x 2 PMF(M); the equality ['℄ � x =x tells us that there exists a measured foliation whose measure class in the

projective space P (RS+) is preserved by '. [Notation: F denotes the foliation

and � denotes a transverse invariant measure on F . ] In other words, there

exists a measured foliation (F ; �) and a scalar � 2 R+ such that'(F ; �) �m '(F ; ��) = �(F ; �) (9.1)

Notes: (1) Here �m is the relation ‘equivalence in measure’ between mea-

sured foliations. Recall that (F1; �1) �m (F2; �2)
96
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tells us that the two measured foliations define the same functional in RS+
(equivalence in the sense of Schwartz). By the results of exposé 6, this rela-

tion is the same as equivalence in the sense of Whitehead, defined in II.1 in

exposé 5.

(2) '(F ; �) denotes the image foliation of F under ', equipped with the

[image-direct] measure: the measure of a transverse arc � is the �-measure of'�1(�).
To go any further, I define a partial measured foliation of M , which is

given on a compact submanifold N of dimension 2, and by a measured folia-

tion (F 0; �0) supported on N , satisfying the following:

(i) Every connected component of �N is a cycle of leaves.

(ii) If � is a component of �N which bounds a disk in M n int(N), then the

number of separatrices which belong to the set Sing(F 0 \ �), re-entrant in N ,

is at least 2.

Given part of a measured foliation (F 0; �) ofM , we may “unglue”F along

all of the leaves which join the singularities, and “blow-up” the singularities

which are not touched by the connection. We obtain, then, a partial measured

foliation U(F ; �), called the unglue of (F ; �), whose singularities are all on unglue

the boundary. One easily verifies the following facts:

(a) i�(F ; �) = i�(U(F ; �)) 2 RS+
(b) if i�(F1; �1) = i�(F2; �2), that is to say, if (F1; �1) �m (F2; �2), thenU(F1; �1) and U(F2; �2) are isotopic.

(c) We denote by �U(F ; �) the union of of the boundary components of

the support of U(F ; �) which do not bound a disk in M . As an element of S 0,�U(F ; �) does not depend on the measure class of (F ; �).
In the spirit of 9.1, given by the fixed point theorem being considered,

there are three possibilities:

i) �U(F ; �) 6= ;
ii) �U(F ; �) = ; and � = 1.

iii) �U(F ; �) = ; and � 6= 1
In the rest of this exposé, we will analyse the three cases. We show that (i)

is the “reducible” case, that (ii) is again a case of “finite order”, whereas case

(iii) is “pseudo-Anosov” (see exposé 1). The classification theorem is stated at

the end of section 9.5. In this exposé, the surfaces are always orientable, but
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the diffeomorphisms do not necessarily preserve orientation, which compli-

cates certain arguments, in particular lemma ??.

9.2 The reducible case: �U(�) 6= ;
The relation refmeasure-equivalence implies that U('(F ; �)) and U(F ; ��)
are isotopic. Hence, in S 0, we have the equality�U(F ; �) = �(U(F ; ��))

On the other hand, �U('U(F ; �)) = '(�U(F ; �))�U('U(F ; ��)) = �U(F ; �))
Hence, the element �(F ; �) of S0 is invariant under ['℄, possibly with the various

components permuted.

In these conditions, ' is isotopic to a diffeomorphism '0 which leaves in-

variant the submanifold �U(F ; �). By cutting M along this family of curves,

we obtain a manifold (with boundary) W , possibly not connected, on which' induces a diffeomorphism  . We recommence an analogous study of  by

applying Thurston’s theory of surfaces with boundary, which is sketched in

exposé 11. Observe that W is simpler that M in the sense that every compo-

nent of W has either smaller genus than M , or the same genus, but smaller

Euler characteristic, in absolute value. Hence, in a finite number of stages we

may give the structure of F up to isotopy.

9.3 Irrational Measured Foliations

By definition, a measured foliation (F ; �) is irrational if �U(F ; �) is empty.irrational

Lemma 9.1 (1) If (F ; �) is an irrational measured foliation, the compact invariant

setX , consisting of all singularities and the leaves joining any two singularities, does

not possess any contractible connected components.

(2) F does not possess any closed, smooth leaves.
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Proof. The manifold M � SuppU(F ; �) collapses onto X , [as in] (1). Suppose

that � is a smooth leaf of (F ; �); in fixing one of the sides of � in M and

applying the stability lemma of exposé 5, one may find a maximal cylinder�: �� [0; 1℄!M such that

1) �(�� f0g) = �;

2) �(�� [0; 1℄) is therefore an embedding of the chosen side of �.

The genus being > 1, if the cylinder is maximal, then �(� � f1g) � X .

In view of 1), the invariant set �: (� � f1g) is collapsible and we may show

without difficulty that �: (� � [0; 1℄) is a disk D2 with spine �(� � f1g). As

there does not exist a measured foliation on D2 such that �D2 is a leaf, the

existence of � is absurd. Hence, every half-leaf of F which does not have a

singularity, is infinite.

Remark. On the torus T 2, by the definition, every foliation is irrational, whereas

a foliation which satisfies the conditions of lemma 1 is conjugate to a linear

foliation with irrational slope.

Corollary 9.2 Under the same conditions as in the preceding lemma, there exists(F 0; �0), equivalent to (F ; �), which does not possess any connections between sin-

gularities. This foliation is unique up to isotopy in its measure class.

Proof. We obtain (F 0; �0) by collapsing every component of the F-invariant

set X described above. The result of collapsing remains unchanged, up to

isotopy, if we make a Whitehead smoothing on X . Uniqueness follows.

Convention: In what follows, we will consistently represent a class of irra-

tional foliations by the canonical model described above.

Lemma 9.3 If (F ; �) is the canonical model of a class of irrational measured folia-

tions and if ' is a diffeomorphism such that '(F ; �) �m �(F ; �) for some � in R�+,

then ' is isotopic to '0 such that'0(F ; �) = (F ; ��)
that is to say: '0 takes leaves to leaves and, for every arc � transverse to F we have�('0�1) = ��(�):
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Figure 9.1: Figure 0.1

Note: if � > 1, this says that ' contracts the transverse distance (by a factor

of (1=�)), whereas if � < 1, this says that ' dilates the transverse distance (by

a factor of (1=�)).
Proof. The foliations '(F ; �) and (F ; ��) are two canonical models of the

same type; hence they are isotopic. By changing ' by this isotopy, one obtains

the required '0.
Definition. Let (F ; �) be any measured foliation. An (F ; �)-rectangle (or(F; �)-rectangle

briefly, an F-rectangle), is the image of an immersion ' : [0; 1℄ � [0; 1℄ ! M
with the following properties:

(a) '�� ℄0; 1[ � ℄0; 1[ is a C1 embedding.

(b) '(ftg�[0; 1℄) is contained in a finite union of leaves and of singularities;

if t 2℄0; 1[ then the image is contained in a single leaf.

(c) '([0; 1℄ � f0g) and '([0; 1℄ � f1g) are transverse to the leaves.

For an F-rectangle R, I consider the decomposition �R = �FR [ ��R
where we define�FR = '(f0; 1g � [0; 1℄) and ��R = '([0; 1℄ � f0; 1g):

I will denote by �0FR and �1FR the images respectively of f0g � [0; 1℄ andf1g � [0; 1℄; an analogous notation will be used for ��R. On the other hand, I

will find it convenient to write intR = '(℄0; 1[�℄0; 1[), which in general is not

the interior of the image; it is easy to see that intR and �R are disjoint.

Definition. A good system of transversals for F is a finite system � = f�i jgood system of

transversals i 2 Ig of simple arcs with the following properties:
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(a) every arc is transverse to F and may not meet a singularity at either of

its endpoints;

(b) Two arcs do not meet at a single endpoint; if this is a singularity, the

two arcs fall into two distinct sections.

Remark. One does not require that every arc contains a singularity.

Lemma 9.4 Given a measured foliation F and a good system of transversals � , there

exists a system of rectangles R1; : : : ; RN , with the following properties.

(1) intRi \ intRj = ; for i 6= j.
(2) ���Ri is contained in a single arc of � .

(3) Every ��FRi contains a point of Sing(F)[�� ; in other words, every rectangleRi is maximal with respect to condition (2).

(4) The two sides of every arc of � are covered by the rectangles.

The system (R1; : : : RN ) is unique.

Remark. It is very instructive to take a small transversal to an irrational folia-

tion of T 2 and to construct the corresponding rectangles.

Example: Cut the manifold as indicated in figure 0.3.

Proof. We obtain a manifold with boundary 
M with a foliation F 0; the bound-

ary � 0 of 
M is the “dedouble” of � . Consider the finite set Z of � 0, defined by dedouble

the following conditions:

(1) x 2 Sing(F 0);
(2) x is one of the points giving an extremity of � .

(3) The departing leaves of x abut a singularity of F , where a point which

gives an endpoint of � .

By the Poincaré recurrence theorem (exposé 5), all leaves which depart

from a point of � 0 � Z return to � 0 � Z .

For every component �i of � 0 � Z , by the maximal rectangle lemma (ex-

posé 5), we may find a rectangle Ri such that �0�Ri = �i is the [attractor] of

another component of � 0 � Z . When we view these in M , the rectangles are

the desired rectangles. Uniqueness is left as an exercise.

Lemma 9.5 If, in the hypothesis of lemma 3, F is an irrational foliation, thenR1 [ � � � [RN =M:
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Proof. In any case, the union of theRi is a closedF-invariant set. If the bound-

ary is not empty, there is a closedF-invariant set consisting of cycles of leaves.

If F is irrational, such a cycle cannot exist, hence the boundary is empty andM = SRi.
Lemma 9.6 If F is an irrational foliation, every half-leaf L of F which does not lead

to a singularity is dense.

Proof. We claim that L is “infinite” (lemma 1). Let � be a small arc transverse

to F and R1; : : : ; RN be the system of rectangles from lemma 3. By the above

lemma,
SRi = M and, since L is infinite, it contains the plaques in

S intRi,
since L meets � . Since � is arbitrary, L is dense.

9.4 Case II: (F ; �) is irrational and � = 1.

Lemma 9.7 If ' is a diffeomorphism and (F ; �) is an irrational foliation such that'(F ; �) = (F ; �)
then ' is isotopic to a diffeomorphism of finite order which preserves (F ; �).
Proof. In the neighbourhood of every singularity, I chose transverse arcs, one

in every sector, all of the same length with respect to the measure �, as indi-

cated in figure 0.4.

Seeing as � = 1, we may choose the system of arcs � in such a fashion that

after an possible isotopy of ', through diffeomorphisms which preserve F ,

we have '(�) = � .

LetR1; : : : ; RN be the system of rectangles associated to � (lemma 3). Since'(�) = � and '(F) = F , we have that every '(Ri) is again an F-rectangle

satisfying condition (2) of lemma 3. It is easy to see that there exists a permu-

tation � of (1; : : : ; N) such that '(Ri) = R�(i). In particular, ' transforms the

graph � = Si ��Ri in the same way. Hence ' permutes the edges of � among

themselves. Working with the cycles of this permutation we may isotope '
to '0, by diffeomorphisms which preserve F , such that '0��� is periodic and'0(Ri) = R�(i).
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Figure 9.2: Figure 0.2

Working with the cycles of �, we may make a second isotopy to obtain a

periodic diffeomorphism, through diffeomorphisms which preserve F .

Remark. Such a diffeomorphism always has a fixed point in TM .

Indeed, if ' is of finite order, '0 is an isometry in a certain metricm (whose

curvature we cannot control); ' is hence an automorphism of the underlying

conformal structure. Furthermore, by the uniformization theorem cited in ex-

posé 7, underlying this structure there is a unique hyperbolic structure which,

as a consequence, is invariant under '.

9.5 Case III; (F ; �) is irrational and � 6= 1
I will suppose now that we are in the situation where '(F ; �) = (F ; ��), with� 6= 1, where F is a canonical model for a class of irrational foliations. By

changing ' to '�1 if necessary, we may assume that � > 1.

Lemma 9.8 The factor � (respectively 1=�) is an algebraic integer of degree bounded

by a quantity which is a function only of the genus of the surface.

Proof. There is a branched covering fM overM in which (F ; �) lifts to a closed

1-form !. If 
 is a loop of M �Sing(F), along which F is orientable, then '(
)
has the same property; it follows that ' lifts to a diffeomorphism  of the

open covering fM ��M � Sing(F). This prolongs to a diffeomorphism e of fM .

We have (e'�1)�(!) = �!.
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Hence � is an eigenvalue of an automorphism ofH1(fM;Z). Now, the rank

of the cohomology group is bounded by a quantity which depends only on

the genus of M .

Lemma 9.9 Under the hypothesis given above, [even if it entails] changing ' by an

isotopy leaving F invariant, we may find a good system of transversals � with the

following properties.

(1) In every sector of a singularity, there is an arc of � . (figure 0.4).

(2) '(�) � r, that is to say, ' takes every arc of � into an arc of � .

(3) If x 2 �� �Sing(F), x belongs to the separatrices of a singularity; we denote

by Fx the arc of the leaf joining x to Sing(F).
(4) Every separatrix contains an Fx.

(5) (SFx) � '(SFx):
Proof. Since � > 1, ' contracts the transversals (see the definition of the direct

image of a measure). By modifying ' by an isotopy which preserves F , is is

easy to find a good system of transversals � 00 which satisfies (1) and (2) and

which has the form of an arc in every sector. Let �00 be an arc of � 00 and L a sep-

aratrix issuing from a singularity s; in view of the density of the semi-leaves,

there is, besides s, a first point of intersection of L with �00. Considering all

of the separatrices, one obtains on �00 a finite number of such points; we sub-

divide �00 by these points, and shrink to a point the longest of the segments.
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Chapter 10
Some dynamics of pseudo-Anosov
diffeomorphisms

by A. Fathi and M. Shub

We prove in this “exposé” that a pseudo-Anosov diffeomorphism realizes the

minimum of topological entropy in its isotopy class. In section 10.1 we de-

fine topological entropy and give its elementary properties. In section 10.2

we define the growth of an endomorphism of a group and show that the

topological entropy of a map is greater that the growth of the endomorphism

it induces on the fundamental group. In section 10.3, we define subshifts of

finite type and give some of their properties. In section 10.4, we prove that

the topological entropy of a pseudo-Anosov diffeomorphism is the growth

rate of the automorphism induced on the fundamental group, it is also log �,

where � > 1 is the stretching factor of f on the unstable foliation. In sec-

tion 10.5, we prove the existence of a Markov partition for a pseudo-Anosov

diffeomorphism, this fact is used in section 10.4. In section 10.6, we show that

a pseudo-Anosov map is Bernoulli.

10.1 Topological Entropy

Topological entropy was defined to be a generalization of measure theoretic

entropy [AKM65]. In some sense, entropy is a number (possibly infinite) which

describes “how much” dynamics a map has. Here the emphasis, of course,

must be on asymptotic behaviour. For example, if f : X ! X is a map andNn(f) is the cardinality of the fixed point set of fn, then lim sup 1n logNn(f) is

105
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one measure of “how much” dynamics f has; but, if we consider f �R� : X�T 1 ! X ! T 1 to be (f � R�)(x; �) = (f(x); � + �) where T 1 = R=Z and� is irrational then Nn(f � R�) = 0, and yet f � R� should have at least as

“much” dynamics as f . Topological entropy is a topological invariant which

overcomes this difficulty.

We describe a lot of material frequently without crediting authors.

Definition. Let f : X ! X be a continuous map of a compact topological

space X . Let A = fAigi2I and B = fBjgj2J be open covers of X . The open

cover fAi \ Bjgi2I;j2J will be denoted by A _ B. If A is a cover, Nn(f;A)
denotes the minimum cardinality of a subcover of A _ f�1A _ f�2A _ � � � _f�n+1A, and h(f;A) = lim sup 1n logNn(f;A). The topological entropy of f istopological entropy h(f) = supA h(f;A) where the supremum is taken over all open covers of X .

Proposition 10.1 Let X and Y be compact spaces. Let f : X ! X; g : Y ! Y andh : X ! Y be continuous. Suppose that h is surjective and hf = gh:����!f����! h ����! h�����!gX XY Y
then h(f) � h(g).

In particular, if h is a homeomorphism, then h(f) = h(g). So topological entropy

is a topological invariant.

Proof. Pull back the open covers of Y to open covers of X .

For metric spaces, compact or not, Bowen has proposed the following defini-

tion.

Definition. Suppose f : X ! X is a continuous map of a metric space X
and suppose K � X is compact. Let � be > 0. We say that a set E � K is(n; �)-separated if, given x; y 2 E with x 6= y, there is 0 � i < n such that(n; �)-separated d(f i(x); f i(y)) � �. We let sK(n; �) be the maximal cardinality of an (n; �)-
separated set contained in K . We say that the set E is (n; �)-spanning for K(n; �)-spanning

if, given y 2 K , there is an x 2 E such that d(f i(x); f i(y)) < � for each i with0 � i < n. We let rK(n; �) be the minimal cardinality of an (n; �)-spanning
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set contained in K . It is easy to see that rK(n; �) � sK(n; �) � rK(n; �=2). We

let �sK(�) = lim sup 1n log sk(n; �) and �rK(�) = lim sup 1n log rk(n; �). Obviously�sK(�) and �rK(�) are decreasing functions of �, and �rK(�) � �sK(�) � �rK(�=2).
Hence, we may define hK(f) = lim�!0 �sK(�) = lim�!0 �rK(�). Finally, we puthX(f) = supfhK(f) j K
ompa
t � Xg.

Proposition 10.2 [Bow70, Din71]. If X is a compact metric space and f : X ! X
is continuous, then hX(f) = h(f).
Proof. The proof is rather straightforward. By the Lebesgue covering lemma,

every open cover has a refinement which consists of �-balls.

The number hX(f) depends on the metric on X and makes best sense for

uniformly continuous maps.

Suppose thatX and Y are metric spaces, we say that p : X ! Y is a metric metric covering map

covering map if it is surjective and satisfies the following condition: there

exists � > 0 such that, for any 0 < Æ < �, any y 2 Y and any x 2 p�1(y), the

map p : BÆ(x)! BÆ(y) is a bijective isometry (here BÆ( ) is the Æ-ball).

The main example we have in mind is the universal covering p : fM ! M
of a compact differentiable manifold M .

Proposition 10.3 Suppose p : X ! Y is a metric covering and f : X ! X; g : Y !Y are uniformly continuous. If pf = gp, then hX(f) = hY (g).
Proof. It should be an easy estimate. The clue is that for ` > 0 and for any

sequence an we have lim sup 1n log(`an) = lim sup 1n log an. If K � X andK 0 � Y are compact and p(K) = K 0, then there is a number ` > 0 such that
ard(p�1(y)) � ` for all y 2 K 0. In fact, we may choose ` such that, if Æ > 0
is small enough, then p�1(BÆ(y)) \ K can be covered by at most ` 2Æ-balls

centered at points in p�1(BÆ(y) \K .

By the uniform continuity of f , we can find a Æ0 (< �) such that x; x0 2 X
and d(x; x0) < Æ0 implies d(f(x); f(x0)) < �, where � > 0 is the one given in

the definition of a metric covering. If 2Æ < Æ0, it is easy to see that if E0 � K 0
is an (n; Æ)-spanning set for g, then there exists an (n; 2Æ)-spanning set E � K
for f , such that 
ardE � ` 
ardE0. So, we have rK(n; 2Æ) � `rK0(n; Æ), hence�rK(f; 2Æ) � �rK0(g; Æ) and hK(f) � hK0(g).
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On the other hand, if E � K is (n; �)-spanning (with 0 < � < �) thenp(E) � K 0 is (n; �)-spanning. So rK0(n; �) � rK(n; �), hence hK0(g) � hK(f).
Consequently hK(f) = hK0(g). Since we sup over all compact sets and sincep is surjective, we obtain hX(f) = hY (g).

We add one additional fact.

Proposition 10.4 If X is compact and f : X ! X is a homeomorphism, thenh(fn) = jnjh(f).
For a proof, see [AKM65] or [Bow70].

10.2 The Fundamental Group

Given a finitely generated groupG and a finite set of generatorsG = fg1; : : : ; grg
of G, we define the length of an element g of G by LG(g) = minimum lengthlength

of a word in the gi’s and the g�1i ’s representing the element g.

It is easy to see that if G0 = fg01; : : : ; g0sg is another set of generators, then:LG(g) � (maxLG(g0i))LG0(g)
If A : G! G is an endomorphism, let:
A := supg2G lim sup 1n logLG(Ang) = supgi2G lim sup 1n logLG(Angi):

So 
A is finite and by the inequality given above, 
A does not depend on the

set of generators.

Proposition 10.5 IfA : G! G is an endomorphism and g 2 G, define gAg�1 : G!G by [gAg�1℄(x) = gA(x)g�1 . We have 
A = 
gAg�1 .

Caution: (gAg�1)n 6= gAng�1.

First, we need a lemma.

Lemma 10.6 Let (an)n�1 and (bn)n�1 be two sequences with an and bn � 0 and k
be > 0. We have:

i) lim sup 1n log(an + bn) = max(lim sup 1n log an; lim sup 1n log bn)
ii) lim sup 1n log kan = lim sup 1n log an
iii) lim sup 1n log an � lim sup 1n log(a1+� � �+an) � max(0; lim sup 1n log an)



D
R

A
FT

30
 M

ay
 2

00
2
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Proof. Put a = lim sup 1n log a and b = lim sup 1n log bn.

(i) The inequality max(a; b) � lim sup 1n log(an + bn) is clear.

If 
 > max(a; b), then we can find n0 � 1 such that n � n0 implies an � en

and bn � en
. We obtain for n � n0:1n log(an + bn) � 1n log(2en
)

Hence lim sup 1n log(an + bn) � lim sup 1n log(2en
) = 
.
(ii) is clear.

(iii) The inequality a � lim sup 1n log(a1 + � � �+ an) is clear.

Suppose 
 > max(0; a). We can find then n0 � 1 such that an � en
 forn � n0. We have for n � n0:a1 + � � �+ an � n0�1Xi=1 ai + e(n+1�n0)
 � 1e
 � 1 en0
:
It follows clearly that lim supn 1n1(a1 + � � �+ an) � 
:
Proof. (Proposition 10.5). If x 2 G, we have:(gAg�1)n(x) = gA(g) � � �An�1(g)An(x)An�1(g�1) � � �A(g�1)g�1
Suppose first that An0(g) = e for some n0, then it is clear by lemma 10.6 (i)

that: lim sup 1n logLG [(gAg�1)n(x)℄ � lim sup 1n logLG(An(x)):
If An(g) 6= e for each n � 1, we have LG(An(g)) � 1, for each n � 1; hencelim sup 1n logLG(An(g)) � 0. By lemma 10.6 (i) & (iii), we obtain:lim sup 1n logLG [(gAg�1)n(x)℄ � max(lim sup 1n logLG((An(g)); lim sup 1n logLG(An(x))):
This gives us 
gAg�1 � 
A, and by symmetry, we have 
gAg�1 = 
A.

For a compact connected differentiable manifold, we interpret �1(M) as

the group of covering transformations of the universal covering space fM ofM . If f : M ! M is continuous, then there is a lifting ~f : fM ! fM . If ~f1 and~f2 are both liftings of f , then ~f1 = � ~f2 for some covering transformation �.
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A given lifting ~f1 determines an endomorphism ~f1# of �1(M) by the formula~f1� = ~f1#(�) ~f1 for any covering transformation �. If ~f1 and ~f2 are two liftings

of f , then ~f1 = � ~f2 for some covering transformation � and ~f1� = � ~f2� =� ~f2#(�) ~f2 = � ~f2#(�)��1 ~f1, so ~f1# = � ~f2#��1 and 
 ~f1# = 
 ~f2# . Thus, we may

define 
f# = 
 ~f# for any lifting ~f : fM ! fM of f . If f has a fixed pointm0 2M ,

then there is also a map f# : �1(M;m0) ! �1(M;m0). The group �1(M;m0)
is isomorphic to the group of covering transformations of fM and f may be

lifted to ~f such that ~f# : �1(M)! �1(M) is identified with f# : �1(M;m0)!�1(M;m0) by this isomorphism. Thus 
f# makes coherent sense in the case

that f has a fixed point as well.

We suppose now that M has a Riemannian metric and we put on fM a

Riemannian metric by lifting the metric on M via the covering map p : M !M . The map p is then a metric covering and the covering transformations are

isometries. We have the following lemma due to Milnor [Mil68].

Lemma 10.7 Fix x0 2 M . There exist two constants 
1; 
2 > 0 such that for eachg 2 �1(M), we have: 
1LG(g) � d(x0; gx0) � 
2LG(g)
Proof. [Mil68]. Let Æ = diam(M), and define N � fM by N = fx 2 fM jd(x; x0) � Æg. We have p(N) =M . Remark that fgNgg2�1(M) is a locally finite

covering of fM by compact sets. Choose as a finite set of generators G = fg 2�1(M) j gN\N 6= ;g and notice that g 2 G () g�1 2 G. SupposeLG(g) = n,

then we can write g = g1 � � � gn with giN \ N 6= ;. It is easy to see then thatd(x0; gx0) � 2Æn. Hence, we obtain:d(x0; gx0) � 2ÆLG(g)
Now, put � = minfd(N; gN) j N \ gN = ;g, by compactness � > 0. Letk be the minimal integer such that d(x0; gx0) < k�. Along the minimizing

geodesic from x0 to gx0, take k + 1 points y0 = x0; y1; : : : ; yk�1; yk = gx0 such

that d(yi; yi+1) < � for i = 0; : : : ; k � 1. Then, for 1 � i � k � 1, choosey0i 2 N and gi 2 G such that yi = giy0i and put g0 = e and gk = g. We haved(giy0i; gi+1y0i+1) < �, hence g�1i gi+1 2 G. From g = (g�10 g1) � � � (g�1k�1gk), we

obtain LG(g) < k.
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Since k is minimal, we have:LG(g) � 1� d(x0; gx0) + 1 � ( 1� + 1�)d(x0; gx0)
where � = minfd(x0; gx0) j g 6= e; g 2 �1(M)g.

Consider now f : M ! M and let ~f : fM ! fM be a lifting of f . Applying

the lemma above, we obtain, for each x0 2 fM :
f# = maxg2�1(M) lim sup 1n log d(x0; ~fn#(g)x0):
We next prove the following lemma:

Lemma 10.8 Given x; y 2 fM , we have:lim sup 1n log d( ~fn(x); ~fn(y)) � h(f):
Proof. Choose an arc � from x to y. If y1; : : : ; y` 2 � is (n+ 1; �)-spanning for� and ~f , then ~fn(�) � [ì=1B( ~fn(yi); �). Since ~fn(�) is connected, this impliesdiam( ~fn(�)) < 2�`. Hence: d( ~fn(x); ~fn(y)) � 2�`:
By taking ` to be minimal, we obtaind( ~fn(x); ~fn(y)) � 2�r�(n+ 1; �):
From this, we get:lim supn!1 1n log d( ~fn(x); ~fn(y)) � lim supn!1 1n log[2�r�(n+ 1; �)℄ = �r�(�)� h�( ~f) � h( ~f ) = h(f):

We are now ready to prove:

Theorem 10.9 If f : M !M is a continuous map, then:h(f) � 
f# :
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Proof. Since 
f# = maxg2�1(M)[lim sup 1n log d(x0; ~fn#(g)x0℄, we have to prove that

for each g 2 �1(M), lim sup 1n log d(x0; ~fn#(g)x0) � h(f):
We have:d(x0; ~fn#(g)x0) � d(x0; ~fn(x0))+d( ~fn(x0); ~fn#(g) ~fn(x0))+d( ~fn#(g) ~fn(x0); ~fn#(g)x0):
Since ~f#(g) ~fn = ~fng, and the covering transformations are isometries, we

obtain: d(x0; ~fn#(g)x0) � 2d(x0; ~fn(x0)) + d( ~fn(x0); ~fn(gx0)):
Remark also that:d(x0; ~f(x0)) � d(x0; ~f(x0)) + d( ~f(x0); ~f2(x0)) + � � �+ d( ~fn�1(x0); ~fn(x0)):
By applying lemma 10.8 and lemma 10.6 (together with the fact h(f) > 0), we

obtain: lim sup 1n log d(x0; ~f#(g)x0) � h(f):
The proof of the following lemma is straightforward.

Lemma 10.10 IfG1 andG2 are finitely generated groups, ifA : G1 ! G1,B : G2 !G2 and p : G1 ! G2 are homomorphisms with p surjective and pA = Bp:����!p ����!����! A ����! B����!p ����!G1 G2 0G1 G2 0
then, 
A � 
B .

Applying this lemma to the fundamental group of M mod the commuta-

tor sub-group, we have ����!p ����!����! f# ����! f1�����!p ����!�1(M) H1(M) 0�1(M) H1(M) 0
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so we obtain Manning’s theorem [Man75].

Theorem 10.11 If f : M ! M is continuous, then h(f) � 
f1� = max log � ,

where � ranges over the eigenvalues of f1�.
Remark 1. For� 2 �1(M;m0), we denote by [�℄ the class of loops freely homo-

topic to �. If M has a Riemannian metric, let `([�℄) be the minimum length of

a (smooth) loop in this class. If f : M ! M is continuous, f [�℄ is clearly well

defined as a free homotopy class of loops. LetGf ([�℄) = lim supn 1n log[`(fn[�℄)℄
and let Gf = sup�Gf ([�℄).

It is not difficult to see thatGf � 
f# . In fact, we have `(fn[�℄) � d(x0; ~fn#(�)x0℄,
since the minimizing geodesic from x0 to ~fn#(�)x0 has an image in M which

represents fn[�℄.
Remark 2. It occurred to various people that Manning’s theorem is a theorem

about �1. Among these are Bowen, Gromov and Shub. Manning’s proof can

be adapted. The proof above is more like Gromov [Gro] or Bowen [Bow70],

but we take responsibility for any error. At first, we assumed that f had a

periodic point or we worked with Gf . After reading Bowen’s proof [Bow78],

we eliminated the necessity for a periodic point.

Remark 3. If x 2 M and � is a path joining x to f(x), we call �# the homo-

morphism �1(M;f(x)) ! �1(M;x). Since f# : �1(M;x) ! �1(M;f(x)), the

composition �#f# : [
℄ 7! [��1
�℄
is a homomorphism of �1(X;x) into itself. This homomorphism can be identi-

fied with ~f# for a lifting ~f of f . Thus our result is the same as Bowen’s [Bow78].

10.3 Subshifts of finite type

Let A = (aij) be a k � k matrix such that aij = 0 or 1, for 1 � i; j � k, that

is A is a 0 � 1 matrix. Such a matrix A determines a subshift of finite type

as follows. Let Sk = f1; : : : ; kg and let �(k) = Qi=1i=�1 Sik, where Sik = Sk
for each i 2 Z. We put on Sk the discrete topology and on �(k) the product

topology. The subset �A � �(k) is the closed subset consisting of those bi-

infinite sequences b = (bn)n2Z such that abibi+1 = 1 for all i 2 Z.
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Pictorially, we imagine k boxes 1; 2; : : : ; k and a point which at discrete

“time n” can be in any one of the boxes. The bi-infinite sequences represent

all possible histories of points. If we add the restriction that a point may move

from box i to box j, if and only if aij = 1, then the set of all possible histories

is precisely �A.

The shift �A : �A ! �A is defined by �A[(bn)n2Z℄ = (b0n)n2Z where b0n =shift bn+1 for each n 2 Z. Clearly, �A is continuous. Let Ci � �(k) be defined byCi := fx 2 �(k) j x0 = ig. Let Di = Ci \ �A, then D = fD1; : : : ;Dkg
is an open cover of �A by pairwise disjoint elements. For any k � k ma-

trix B = (bij), we define the norm jjBjj of B by jjBjj := Pki;j=1 jbij j. It is

easy to see that Nn(�A;D) = min 
ard(D _ � � � _ ��n+1A D) � jjAn�1jj be-

cause the integer a(n)ij is equal to the number of sequences (i0; : : : ; in) withi` 2 f1; : : : ; kg; i0 = i; in = j and ai`i`+1 = 1. So lim sup 1n log(Nn(�A;D)) �lim sup 1n log jjAn�1jj = lim sup log jjAnjj1=n. This latter number is recognizable

as log(spectral radius A) or log �, where � is the largest modulus of an eigen-

value of A. In fact, we have:

Proposition 10.12 For any subshift of finite type �A : �A ! �A, we have h(�A) =log �, where � is the spectral radius of A.

Proof. We begin by noticing that each open cover U of �A is refined by a cover

of the form
Ẁi=�`��iA D. This implies, with the notations of section 10.1:Nn(�A;U) � card( n+_̀j=�`��jA D) = card(n+2`_j=0 ��jA D) = Nn+2`+1(�A;D)

Hence, we obtain: h(�A;U) � h(�A;D). This shows that h(�A) = h(�A;D).
We now compute h(�A;D). We distinguish two cases.

First case. Each state i = 1; : : : ; k occurs. This means that Di 6= ; for eachDi 2 D. It is not difficult to show by induction that we have in factNn+1(�A;D) = 
ard(D _ � � � _ ��nA D) = kAnk:
This proves the proposition in this case, as we saw above.
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Second case. Some states do not occur. One can see that a state i occurs, if,

and only if, for each n � 0, we have:kXj=1 a(n)ij > 0 and
kXj=1 a(n)ji > 0

where An = (a(n)ij ).
Notice that if

Pkj=1 a(n0)ij = 0 then
Pkj=1 a(n)ij = 0 for all n � n0. This is

because each a`m is � 0.

Now, we partition f1; : : : ; kg into three subsets X;Y;Z; where:X = fi j 8n � 0 kXj=1 a(n)ij > 0 and
kXj=1 a(n)ji > 0gY = fi j 9n > 0 kXj=1 a(n)ij = 0g = fi j for n large

kXj=1 a(n)ij = 0gZ = f1; : : : ; kg � (X [ Y ):
We have: Z � fi j for n large

kXj=1 a(n)ji = 0g
By performing a permutation of f1; : : : ; kg, we can suppose that we have the

following situation: f1; : : : ; t| {z }X ; t+ 1; : : : ; s| {z }Y ; s+ 1; : : : ; k| {z }Z g
If B is a k � k matrix, we write:B = 264 BXX BXY BXZBY X BY Y BY ZBZX BZY BZZ 375

where BKL corresponds to the subblock of B having row indices in K and

column indices in L.

It is easy to show that:Nn+1(�A;D) = 
ard(D _ � � � _ ��nA D) = kAnX;Xk:
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On the other hand, by the definition of Y and Z , for n large, An has the form:An = 264 (An)X;X (An)X;Y 00 0 0(An)Z;X (An)Z;Y 0 375
This implies that for n large, An and (An)X;X have the same non-zero

eigenvalues, in particularlog(spectral radiusAnX;X) = n log �:
Remark also that we get, for n large and k � 1:(Akn)X;X = [(An)X;X ℄k:
This gives us, for n large:lim supk!1 1kn+ 1 logNkn+1(�A;D) = lim supk!1 1kn+ 1 


[(An)X;X ℄k


 = log �
This implies that:log � � h(�A;D) = lim supn!1 1n logNn(�A;D)
As we showed the reverse inequality, we have:log � = h(�A;D) = h(�A):
10.4 The entropy of pseudo-Anosov diffeomorphisms

Now we suppose that we have a compact, connected 2-manifold M without

boundary with genus � 2, and a pseudo-Anosov diffeomorphism f : M !M . Hence there exists a pair (FU ; �U ) and (FS ; �S) of transverse measured

foliations with (the same) singularities such that f(FS ; �S) = (FS ; 1��S) andf(FU ; �U ) = (FU ; ��U ) where � > 1. This means, in particular, that f pre-

serves the two foliations FS and FU ; it contracts the leaves of FS by 1� and it

expands the leaves of FU by �.
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Let us recall that for any non-trivial simple closed curve �we have log � =Gf (a) (see proposition ??), hence we get log � � Gf . [For the definition of Gf ,

look at the end of section 10.2.]

Proposition 10.13 If f : M ! M is pseudo-Anosov, then h(f) = 
f# . So in

particular, f has the minimal entropy of anything in its homotopy class. Moreoverh(f) = log � where � is the expanding factor of f .

Proof. Since Gf � log �, it suffices to show that h(f) � log � for a pseudo-

Anosov diffeomorphism f . To do this, we find a subshift of finite type �A : �A !�A and a surjective continuous map �A !M such that:����!�A����! � ����! ������!f�A �AM M
and log(spectral radiusA) = h(�A) = log � for this same �. Thus we will havelog � � Gf � 
f# � h(f) � h(�A) or log � � h(f) � log �.

In the following, we construct A and � via Markov partitions.

First some definitions.

Definition. (compare chapter 8). A subsetR ofM is called a (FS ;FU )-rectangle,(FS;FU )-rectangle

or birectangle, if there exists an immersion � : [0; 1℄� [0; 1℄ !M whose image birectangle

is R and such that:� '���℄0; 1[�℄0; 1[ is an embedding;� 8t 2 [0; 1℄; '(ftg � [0; 1℄) is included in a finite union of leaves and sin-

gularities of FS , and in fact in one leaf if t 2℄0; 1[� 8t 2 [0; 1℄; '([0; 1℄ � ftg) is included in a finite union of leaves and sin-

gularities of FU , and in fact in one leaf if t 2℄0; 1[.
We adopt the following notations: intR = ��℄0; 1[�℄0; 1[�, �0FSR = �(f0g�[0; 1℄), �1FSR = �(f1g � [0; 1℄), �FSR = �0FSR[ �1FSR and in the same way, we

define �0FUR; �1FUR; �FUR.
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Figure 10.1:

Remark that intR is disjoint from �FSR [ �FUR, because ����℄0; 1[�℄0; 1[ is

an embedding.

We call a set of the form �(ftg � [0; 1℄) ( resp. �([0; 1℄ � ftg) ) a FS-fiber,

(resp. a FU -fiber) of R. We will call a birectangle good if � is an embedding.birectangle, good

If R is good birectangle, a point x of R is contained in only one FS-fiber

which we will denote by FS(x;R). In the same way, we define FU (x;R).
Remark 1. If R is a FU -rectangle (see chapter 8) and �0�R and �1�R are con-

tained in a union of FS-leaves and singularities, it is easy to see that R is in

fact a birectangle.

Remark 2. We used the word birectangle instead of rectangle, even though

rectangle is the standard word in Markov partitions, because this word was

already used in chapter 8.

Remark 3. If R1 and R2 are birectangles and R1 \ R2 6= ; then it is a finite

union of birectangles and possibly of some arcs contained in (�FSR[�FUR)\(�FSR [ �FUR).
Moreover the birectangles are the closures of the connected components

of intR1 \ intR2.

If R is a birectangle, we define the width of R by:width
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Lemma 10.14 There exists � > 0 such that, if R is a birectangle with W(R) � �,
then it is a good rectangle.

Proof. [Sketch] If a birectangle is contained in a coordinate chart of the foli-

ations, then it is automatically a good birectangle. The existence of � follows

from compactness.

Lemma 10.15 There exists e > 0 such that if � (resp. � ) is an arc contained in

a finite union of leaves and singularities of FS (resp. FU ) with �U(�) < � (resp.�S(�) < �), then the intersection of � and � is at most one point.

Definition. A Markov partition for the pseudo-Anosov diffeomorphism f : M !Markov partitionM is a collection of birectangles R = fR1; : : : ; Rk; g such that

1.
Ski=1Ri =M ;

2. Ri is a good rectangle;

3. intRi \ intRj = ; for i 6= j;
4. If x is in int(Ri) and f(x) is in int(Rj), thenf(FS(x;Ri)) � FS(f(x); Rj); and f�1(FU (f(x); Rj)) � FU (x;Ri);
5. If x is in int(Ri) and f(x) is in int(Rj), thenf(FU (x;Ri))\(Rj) = FU (f(x); Rj) and f�1(FS(x;Rj))\Ri = FS(x;Ri);
This means that f(Ri) goes across Rj just one time.

We will show in next section how to construct a Markov partition for a

pseudo-Anosov diffeomorphism.

Given a Markov partition R = (R1; : : : ; Rkg, we construct the subshift of

finite type �A and the map h : �A ! M as follows. Let A be the k � k matrix

defined by aij = 1 if f(intRi) \ intRj 6= ;, and aij = 0 otherwise. If b 2 �A
then

Ti2Zf�i(Rbi) is non-empty and consists in fact of a single point. This

will follow from the following lemma.
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Figure 10.2:

Lemma 10.16 i) Suppose aij = 1, then f(Ri)\Rj is a non-empty (good) birectangle

which is a union of FU -fibers of Rj .
ii) Suppose moreover that C is a birectangle contained in Ri which is a union

of FU -fibers of Ri, then f(C) \ Rj is a non-empty birectangle which is a union ofFU -fibers of Rj .
iii) Given b 2 �A, for each n 2 N ;Tni=�n f�i(Rbi) is a non-empty birectangle.

Moreover, we have W(Tni=�n f�i(Rbi)) � ��nmaxfW(R1); : : : ;W(Rk)g.

Proof. Since aij = 1, we can find x 2 int(Ri)\f�1(intRj). We have f(FS(x;Ri)) �FS(f(x); Rj) � Rj . Since each FU -fiber of Ri intersects FS(x;Ri), we obtain

that the image of each FU -fiber of Ri intersects Rj . Moreover, by condition

5), f [Ri � �FURi℄ \ Rj is an union of FU -fibers of Rj , hence f(Ri) \ Rj =f(Ri � �FURi) \Rj is also a union of FU -fibers of Rj . This proves i). The

proof of ii) is the same.

To prove iii), remark first that it follows by induction on n using ii) that

each set of the form fnRbi\fn�1(Rbi+1)\� � �\Rbi+n is a non-empty birectangle

which is a union of FU -fibers of Rbi+n . In particular,
Tni=�n f�i(Rbi) is a non-

empty birectangle in Rb0 . The estimate of the width is clear.

By the lemma, if b 2 �A the set
Ti2Zf�i(Rbi) is the intersection of a de-

creasing sequence of non-empty compact sets, namely the sets
Tni=�n f�i(Rbi)

for n 2 N .

Hence
Ti2Zf�i(Rbi) is non-void. It is reduced to one point becauseW(Ti2Zf�i(Rbi))

tends to zero as n goes to infinity.

The map � : �A ! M given by �(b) = Ti2Zf�i(Rbi) is well defined, it is
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easy to see that it is continuous and that the following diagram commutes����!�A����!� ����! ������!f�A �AM M
We show now that � is surjective. First remark that, for each i = 1; : : : ; k

the closure of int(Ri) is Ri. Hence V = Ski=1 int(Ri) is a dense open set. By

the Baire category theorem U = Ti2Zf�i(V ) is dense in M . If x 2 U , then

for each n 2 Z, the point fn(x) is in a unique int(Rbn) and b = fbngn2Z is an

element of �A. It is clear that �(b) = x. Thus �(�A) � U . As �A is compact

and h continuous, we have �(�A) =M .

Up to now, we have obtained thatlog � � Gf � 
f# � h(f) � h(�A) = log(spectral radius of A)
All that remains is to show that:(spectral radius of A) = �:

To see this, we do the following thing. Put yi = �U ((FS-fiber of Ri)), it is clear

that this quantity is independent of the FS-fiber of Ri and also yi > 0.

We have trivially the following equality:yj = kXi=1 yi� aij
which gives: �yj = kXi=1 yiaij
[in particular � is an eigenvalue of A.] Hence. we obtain�yj � � kXi=1 aij�mini yi
This gives us: ��Xj yj� � jjAjjmini yi
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where jj jj is the norm introduced in section 10.3.

In the same way, we obtain for each n � 2:�n�Xj yj� � jjAnjjmini yi
Hence: � � jjAnjj1=n�min(y1; : : : ; yk)Pj yj �1=n:
Since min(y1; : : : ; yk) > 0,limn!1�min(y1; : : : ; yk)Pj yj �1=n = 1
We thus obtain: � � limn!1 jjAnjj1=n = spectral radius of A:
Since � is an eigenvalue of A, we obtain:� = spectral radius of A:
10.5 Construction of Markov partitions for pseudo-Anosov diffeo-

morphisms

In this section, we still consider f : M ! M a pseudo-Anosov diffeomorph-

ism and we keep the notations of the last section. We sketch the proof of the

following proposition.

Proposition 10.17 A pseudo-Anosov diffeomorphism has a Markov partition.

Proof. Using the methods given in section ??, it is easy, starting with a family

of transversals to FU contained in FS-leaves and singularities, to construct a

family R of FU -rectangles R1; : : : ; R` such that

(i)
S̀i=1Ri =M ;

(ii) int(Ri) \ int(Rj) = ; for i 6= j;
(iii) f�1(Sì=1 �FURi) � Sì=1 �FURi, f(Sì=1 �FSRi) � Sì=1 �FSRi,
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By the remark following the definition of birectangles, the Ri’s are birect-

angles since the system of transversals is contained in FS-leaves and singu-

larities.

We define for each n a family of birectangles fRng in the following way:

the birectangles of fRng will be the closures of the connected components of

the non-empty open sets contained inn_i=�n f iRÆ = ( n\i=�n f i(intRai) j Rai 2 R) :
It is easy to see that Rn still satisfies the properties (i), (ii) and (iii) given

above. Moreover, if R 2 Rn, we have W(R) � ��nmaxfW(Ri) j Ri 2 Rg. In

particular, by lemma 10.14 of last section, for n sufficiently large, each birect-

angle R in Rn is a good one.

We assert that for n sufficiently large Rn is a Markov partition. All that

remains is to verify properties (4) and (5) of a Markov partition. It is an easy

exercise to show that property (4) is a consequence of property (iii) given

above (see lemma ??). By lemma 10.15, if n is sufficiently large and R;R0 2Rn, then if x 2 R, f(FU (x;R)) intersects in at most one point each FS-fiber

of R0. Property (5) follows easily from the combination of this fact and of

property (4).

Example of Markov partition on T . Let A : T 2 ! T 2 be the linear map de-

fined by A =  2 11 1 ! :
Here T 2 = R2=Z2; and A acts on R preserving Z, thus A defines a map of T .

The translates of the eigenspaces of A foliate T . The map A on T is Anosov.

The foliation of T corresponding to the eigenvalue 3+p52 is expanded, the fo-

liation corresponding to 3�p52 is contracted.

We draw a fundamental domain with eigenspaces approximately drawn

in (see figure 10.3.)

The endpoints of the short stable manifold are on the unstable manifolds

after equivalences have been made. Filling in to maximal rectangles gives us

the picture in figure 10.4.
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Figure 10.3:

Figure 10.4:

The hatched line is the extension of the unstable manifold. Identified pieces

are numbered similarly. One rectangle is given by 1,2,3,6 and the other by 4,5.

This partition in two rectangles gives a Markov partition by taking intersec-

tions with direct and inverse images.

The construction of the Markov partition of a pseudo-Anosov diffeomorph-

ism f : M , which preserves orientation and fixes the prongs of FS and FU , is

the same as in the example above. We sketch here the argument, hoping that

it will aid the reader to understand the general case.

Since the unstable prongs are dense, we may pick small stable prongs

whose endpoints lie on unstable prongs.

Roughly, the picture is as shown in figure 10.5.

We may extend these curves to maximal birectangles leaving the drawn

curves as boundaries. By density of the leaves, every leaf crosses a small sta-

ble prong, so the rectangles obtained this way cover M2. The extension pro-

cess requires that the unstable prongs be extended perhaps but the extension

remains connected. Thus we have a partition by birectangles with boundaries

the unions of connected segments lying on stable or unstable prongs. Conse-

quently an unstable leaf entering the interior of a birectangle under f can’t

end in the interior, because the stable boundary has been taken to the stable



D
R

A
FT

30
 M

ay
 2

00
2
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Figure 10.5: Small stable prong

boundary, etc. . .

Figure 10.6:

The only thing left is to make the partition sufficiently small. To do this,

it is sufficient to take the birectangles obtained by intersections f�nR _ � � � _R _ � � � fn(R) for n sufficiently large.

10.6 Pseudo-Anosov diffeomorphisms are Bernoulli

A pseudo-Anosov diffeomorphism f : M ! M has a natural invariant prob-

ability measure � which is given locally by the product of �S restricted to

plaques of FS with �U restricted to plaques of FU . The goal of this section is

to sketch the proof of the following theorem.

Theorem 10.18 The dynamical system (M;f; �) is isomorphic (in the measure the-

oretical sense) to a Bernoulli shift.
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Recall that a Bernoulli shift is a shift (�(`); �) together a measure � which

is the infinite product of some probability measure on f1; : : : ; `g. Obviously,� is invariant under �, see [Orn74], [Sin76b].

We will have to use the notion and properties of measure theoretic en-

tropy, see [Sin76b]. We will also need the following two theorems on subshifts

of finite type.

Let A be a k � k matrix and (�; �A) be the subshift of finite type obtained

from it.

Theorem 10.19 (Parry [Par64]) Suppose that A has all its entries > 0 for some n.

Then, there is a probability measure �A invariant under �A such that the measure

theoretic entropy h�A(�A) is equal to the topological entropy h(�A). Moreover, �A is

the only invariant probability measure having this property, and (�A; �A; �A) is a

mixing Markov process.

Theorem 10.20 (Friedman-Ornstein [Orn74]) A mixing Markov process is iso-

morphic to a Bernoulli shift. In particular, the (�A; �A; �A) above is Bernoulli.

Now we begin to prove that (M;f; �) is Bernoulli. For this, we will use

the subshift (�A; �A) and the map � : (�A; �A) ! (M;f) obtained from the

Markov partition R = fR1; : : : ; Rkg.

Lemma 10.21 There exists n � 1 such that An has entries > 0.

Proof. Given Ri, we can find a periodic point xi 2 RÆi , call ni its period. Con-

sider the unstable fiber FU (xi; Ri); we have, for ` � 0, f `ni(FU (xi; Ri)) �FU (xi; Ri).
Moreover the �S-length of f `ni(FU (xi; Ri)) is �`ni�S(FU (xi; Ri)). This im-

plies that f `ni(FU (xi; Ri)) \RÆj 6= ; 8 j = 1; : : : ; k;n = ` �Qki=1 ni with ` large enough, we get f(Ri) \Rj 6= ; for each pair (i; j).
Hence, we obtain that a(n)ij > 0 for each (i; j), where An = (a(n)ij )

This lemma shows that (�A; �A; �A) is Bernoulli by the results quoted

above. All we have to do now is to prove that (M;f; �) is isomorphic to(�A; �A; �A).
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Lemma 10.22 The measure theoretic entropy h�(f) is log �.

Proof. Since topological entropy is the supremum of measure theoretical en-

tropies (see [Bow70], [Goo71]), we have h�(f) � log �. Consider now the par-

tition RÆ = fintRig; its �-entropy h�(f;RÆ) with respect to f is given by:h�(f;RÆ) = limn � 1nX a(n)ij ��nyixj log(��nyixj)
where yi = �U (FS-fiber of Ri) and xj = �S(FU -fiber of Rj). As we saw at the

end of section 10.4,
a(n)ij�n � jjAnjj�n is bounded (by

P yimin yi ). This implies:limn � 1nX a(n)ij ��nyixj log yixj = 0:
We have also:X a(n)ij ��nyixj =X yjxj =X�(RÆj ) = �(M) = 1
By putting these facts together, we obtain: h�(f;RÆ) = log �. Hence, h�(f) =log �, because log � = h�(f;RÆ) � h�(f) � h(f) = log �.

Proof. Proof of the theorem. Put �R = Ski=1 �Ri, we have �(�R) = 0. This im-

plies that the set Z =M �Si2Zf i(�R) has �-measure equal to one. We know

by section 10.4 that � induces a (bi-continuous) bijection of ��1(Z) onto Z , we

can then define a probability measure � on�A by �(B) = �(�([��1(Z)\B℄) for

each Borel setB � �A. It is easy to see that � is �A invariant; moreover, � gives

rise to a measure theoretic isomorphism between (�A; �A; �) and (M;f; �). In

particular h�(�A) = h�(f) = log �. Since log � is also the topological entropy

of �A we obtain from Parry’s theorem that � = �A and that (�A; �A; �) is

a mixing Markov process. By the Friedman-Ornstein theorem, (�A; �A; �) is

Bernoulli, hence (M;f; �) is also Bernoulli.
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Uniqueness theorems for pseudo-Anosov
diffeomorphisms.

by A. Fathi and V. Poénaru
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Construction of pseudo-Anosov
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by F. Laudenbach
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Chapter 14
Fibrations of S1 with Pseudo-Anosov
Monodromy

by David Fried

We will develop Thurston’s description of the collection of fibrations of a

closed three manifold over S1. We will then show that the suspended flows of

pseudo-Anosov diffeomorphisms are canonical representatives of their non-

singular homotopy class, thus extending Thurston’s theorem for surface home-

omorphisms to a class of three dimensional flows. Our proof uses Thurston’s

work on fibrations and surface homeomorphisms and our criterion for cross-

sections to flows with Markov partitions. We thank Dennis Sullivan for intro-

ducing Thurston’s results to us. We are also grateful to Albert Fathi, François

Laudenbach and Michael Shub for their helpful suggestions.

A smooth fibration f : X ! S1 of a manifold over the circle determines

a nonsingular (i.e., never zero) closed 1-form f�(d�) with integral periods.

Conversely if ! is a nonsingular closed 1-form and X is closed, then the mapf(x) = R xx0 ! from X to R=periods(!) will be a fibration over S1 provided

the periods of ! have rational ratios. For since �1X is finitely generated, the

periods of ! will be a cyclic subgroup of R (not trivial since X is compact andf open) and we have R=periods �= S1. By constructing a smooth flow  on X
with !(d dt ) = 1, we see that f is a fibration. The relation of nonsingular closed

1-forms to fibrations over S1 is very strong indeed, as the following theorem

(which gives strong topological constraints on the existence of nonsingular

closed 1-forms) indicates.

Theorem 14.1 ([Tis70]) For a compact manifold X , the collection C of nonsingular

131
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classes, that is the cohomology classes of nonsingular closed 1-forms on X , is an open

cone in H1(X;R)� f0g. The cone C is nonempty if and only if X fibers over S1.

Proof. The openness of C follows easily from de Rham’s Theorem. If �1; : : : ; �d
are closed 1-forms that span H1(X;R) and if !0 is a closed 1-form, then the

forms !a = !o + Pdi=1 ai�i; jaij < �, represent a neighborhood of [!0℄ inH1(X;R). If !0 is nonsingular and � sufficiently small, then the !a are non-

singular. The forms �!a, with � > 0 represent all positive multiples of [!a℄, soC is an open cone.

Choosing a so that the periods of !a are rationally related, we see that X
fibers over S1. We already noted that 0 =2 C.

In dimension 3, Stallings characterized the elements of C \ H1(X;Z) �H1(X;R). We note that if X is closed, connected and oriented and does fiber

over S1 with fibers of positive genus, then X will be covered by Euclidean

space R3. Thus X will be irreducible, that is, every sphere S2 embedded inirreducible X must bound a ball (this follows from Alexander’s theorem showing R3 is

irreducible). We assume hence-forward that M is a closed, connected oriented

and irreducible 3-dimensional manifold.

Theorem 14.2 ([Sta61]) If u 2 H1(M ;Z)� f0g, then there is a fibration f : M !S1 with [f�(d�)℄ = u, if and only if ker(u : �1M ! Z) is finitely generated.

We observe that the forward implication holds even for finite complexes

since the homotopy exact sequence identifies the kernel as the fundamental

group of the fiber.

Theorem 14.2 reduces the geometric problem of fiberingM to an algebraic

problem, with only two practical complications. First, whenever dimH1(M ;R) >1, there are infinitely many u to check. Secondly, it is difficult to decide if ker u
is finitely generated. An infinite presentation may be readily constructed by

the Reidemeister-Schreier process; this yields an effective procedure for de-

ciding if the abelianization of ker u is finitely generated (we work out an ex-

ample of this at the end of the chapter.)

Thurston’s theorem (theorem 14.6 below) helps to minimize the first prob-

lem and make Stalling’s criterion more practical. It will be seen that one need

only examine finitely many u, provided one can compute a certain natural

seminorm on H1(M ;R).
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As H1(M ;Z) � H1(M ;R) is a lattice of maximal rank, the seminorm will

be determined by its values onH1(M ;Z). Each u 2 H1(M ;Z) is geometrically

represented by framed surfaces under the Pontrjagin construction [Mil66]. A

framed (that is, normally oriented) surface S represents u whenever there is

a smooth map f : M ! S1 with regular value x so that S = f�1(x) andu = f�(d�). By irreducibility of M , any framed sphere in M represents the 0
class so S may be taken sphereless (that is, all components of S have Euler sphereless

characteristic � 0.)

Definition. kuk := minf��(S) j S is a sphereless framed surface representing ug
It is important to observe that a sphereless framed surface S in M , withkuk = ��(S), must be incompressible (that is, for each component Si � incompressibleS, �1(Si) ! �1M is injective.) For (see Kneser’s lemma [Sta71]), one could

otherwise attach a 2-handle to Si so as to lower ��(S) without introducing

spherical components.

The justification for the notation kuk is the following result.

Theorem 14.3 ([Thu86]) kuk is a seminorm on H1(M ;Z).
This follows from standard 3-manifold techniques. The triangle inequality

follows from the incompressibility of minimal representatives and some cut-

and-paste arguments. The homogeneity follows by the covering homotopy

theorem for the cover zn : S1 ! S1.

One instance where kuk is easily computed is where u is represented by

the fiber K of a fibration f : M ! S1. We have:

Proposition 14.4 ([Thu86]) If K ! M f�!S1 is a fibration, then


[f�(d�)℄

 =��(K).

Proof. By homogeneity we may suppose that u = [f�(d�)℄ is indivisible, that

is u(�1M) = �1S1. This implies that K is connected and that K � R is the

infinite cyclic cover of M determined by u. If K is a torus we are done, so

assume ��(K) > 0. Any sphereless framed surface S representing u lifts toK � R, since for any component S0 � S we have �1S0 � ker u = �1K . If��(S) = kuk, then S is incompressible and �1S0 ! �1(K � R) = �1(K) is
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injective. Since subgroups of �1K of infinite index are free, we see that S0 is a

finite cover of K , hence kuk = ��(S) � ��(S0) � ��(K), as desired.

In fact, we see that any sphereless framed surface S representing u with

minimal ��(S) is homotopic to the fiber K .

The behaviour of k k is decisively determined by the fact that integral

classes have integral seminorms. We will show:

Theorem 14.5 ([Thu86]) A seminorm k k : Zn ! Z extends uniquely to a semi-

norm k k : Rn ! [0;1). A seminorm on Rn takes integer values on Zn , kxk =max`2F j`(x)j, where F � Hom(Zn;Z) is finite.

This enables us to state Thurston’s description of the cone C of nonsingular

classes, C � H1(M ;R)� f0g.

We will consistently use certain natural isomorphisms of the homology

and cohomology groups ofM . By the Universal Coefficient Theorem,H1(M ;Z) �=
Hom(H1(M ;Z);Z) and H1(M ;Z)=torsion �= Hom(H1(M ;Z);Z). With real co-

efficients,Hi(M ;R) andHi(M ;R) are dual vector spaces for any i. By Poincaré

Duality, we may identify H2(M ;Z) with H1(M ;Z). Thus we regard the Euler

class �F of a plane bundle F on M , which is usually taken to be in H2(M ;Z),
as an element of H1(M ;Z) and thus as a linear functional on H1(M ;R).
Theorem 14.6 ([Thu86]) C is the union of (finitely many) convex open cones inint(Ti), where Ti is a maximal region on which k k is linear. The region Ti containing

a given nonsingular 1-form ! is Ti = fu 2 H1(M ;R) j kuk = ��F (u)g where �F
is the Euler class of the plane bundle F = ker!.

Note. When k k is a norm, we may say that C is all vectors v 6= 0 such thatvkvk belongs to certain “nonsingular faces” of the polyhedral unit ball. Inci-

dentally, we have that k k is a norm () all T 2 � M separate M () all

incompressible T 2 �M separate M .

We give our own analytic proof of theorem 14.5.

Proof. Clearly k k extends by homogeneity to a seminorm k k on Qn. This

function is Lipschitz, hence has a unique continuous extension to a functionRn ! [0;1[. The triangle inequality and homogeneity follow by continuity.
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By convexity, all one-sided directional derivatives of N(x) = kxk exist.

Suppose � = (0; 1qp); q 2 Z+; p = (p2; : : : ; pn) 2 Zn�1 is a rational point. For

integral m, we compute�+N�x1 (�) = limm!1 N(� + 1=qme1)�N(�)1=qm= limm!1(N(1;mp2; : : : ;mpn)�N(0;mp2; : : : ;mpn))2 Z;
since Z is closed.

By induction on n, we assume that N(0; �x), �x 2 Rn�1, is given by the

supremum of finitely many functionals `(�x) = a2x2+� � �+anxn; a2; : : : ; an 2Z, �x = (x2; : : : ; xn). By convexity, any supporting line L to graph(N) � Rn�R
lies in a supporting hyperplane H (supporting means intersects the graph supporting

without passing above it.) We choose �x a rational point for which N j0� Rn�1
is locally given by ` and choose L to pass through (0; �x;N(0; �x)) 2 Rn � R in

the direction of (1; 0; �+N�x (0; �x)). Then we see that H is uniquely determined

as the graph of (�+N�x1 (0; �x))x1 + a2x2 + � � � + anxn. So for a dense set of �x, the

graph of N has a supporting functional at (0; �x) with integral coefficients.

Reasoning for each integrally defined hyperplane as we have for fx1 = 0g,

we find integral supporting functionals `(x) = a1x1 + � � � + anxn; ai 2 Z, to

the graph ofN exist at a dense set in Rn. Since N is Lipschitz, there is a boundjaij � K; i = 1; : : : ; n. Thus the supporting functionals form a finite set F ,

so S(x) = sup`2F j`(x)j is clearly a seminorm. But S(x) � N(x) and equality

holds on a dense set, implying that S(x) = N(x) by continuity.

Before giving the proof of theorem 14.6, let us observe one elementary con-

sequence of theorem 14.5. Since k k is natural, any diffeomorphism h : M !M induces an isometry h� of H1(M ;R). If k k is a norm, then the finite set of

vertices of the unit ball spans H1(M ;R) and is permuted by h�.
Corollary 14.7 If all incompressible T 2 �M separate M , then the image ofDi�(M)
in GL(H1(M ;R)) is finite.

Proof. Suppose !; !0 are nonsingular closed 1-forms that are C0 close. Then

the oriented plane fields F = ker!, F 0 = ker!0 are homotopic and so deter-

mine the same Euler class �F 0 = �F 2 H1(M ;R).
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If [!0℄ is rational, let q[!0℄ = �0 2 H1(M ;Z), where 0 < q 2 Q and �0 is

indivisible. Then ifK 0 is the (connected) fiber of the fibration associated to q!0,
we have �(K 0) = �F 0(K 0) = �F (K 0). Using this and proposition 14.4, we find

[!0℄

 = 1q (��(K 0)) = �1q�F (K 0) = �F [!0℄. Thus for all rational classes [!0℄
near [!℄, k k is given by the linear functional ��F . This show that k k agrees

with ��F on a neighborhood of any nonsingular class [!℄, as desired.

It only remains to show that every � 2 int(T ) is a nonsingular class, whereT = f� 2 H1(M ;R) j k�k = ��F (�)g is the largest region containing [!℄ on

which k k is linear.

For this, we need a result of Thurston’s thesis [Thu72] concerning the iso-

topy of an incompressible surface S � M when M is foliated without “dead

end components”. In fact, this result is only explicitly stated for tori, and one

must see [Rou73] for a published account of this case. Restricting our atten-

tion to the foliation F defined by ! (F is tangent to ker! = F ), we may

state this result as follows: any incompressible, oriented and connected sur-

face S0 �M with ��(S0) � 0 may be isotoped so as to either lie in a leaf of F
or so as to have only saddle tangencies with F . (We call a tangency point s ofS0 withF a saddle if for some open ballB around s, the map

R xs ! : B\S0 ! Rsaddle

has a non-degenerate critical point at s which is not a local extremum.)

Suppose� 2 T\H1(M ;Z) is not a multiple of [!℄. Represent� by a framed

sphereless surface with ��(S) = k�k. As S is incompressible, each compo-

nent of S may be isotoped (independently) to a surface Si which either lies in

a leaf of F or has only saddle tangencies with F . If some Si lies in a leaf L ofF , then (as in proposition 14.4) �1Si would be of finite index in �1L = ker[!℄.
Since �1Si � ker�, we would find that � is a multiple of [!℄. Thus each Si has

only saddle tangencies with F .

Lemma 14.8 For each i, the normal orientations of Si and F agree at all tangencies.

Proof. We compute k�k in two ways. First, k�k = ��(S) =Pi��(Si) Choos-

ing some Riemannian metric on M , we may use the vector field Vi on Si dual

to !jSi to compute ��(Si). Vi will have only non-degenerate zeroes of in-

dex �1, since all tangencies are saddles. The Hopf Index theorem [Mil66]

gives ��(Si) = ni, where ni is the number of tangencies of Si with F . Thusk�k =Pni.
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On the other hand, we know that � 2 T implies k�k = ��F (�). The nat-

ural normal orientations of F and S gives us preferred orientations on F andSi, for each i. Each oriented plane bundle F jSi has an Euler class �F (Si)[Si℄
where [Si℄ 2 H2(Si;Z) is the orientation class. We compute �F (Si) as the self-

intersection number of the zero section of F jSi. For the purpose, look at the

field Wi of vectors on Si tangent to F , which are the projection onto F of the

unit normal vectors of Si. Regarding Wi as a perturbation of the zero section

of F jSi, we compute the self-intersection number using the local orientations

of F and Si. When these orientations agree, one counts the singularity as �1
(just as in the tangent bundle case already considered) but when the orien-

tations disagree one counts +1. Thus ��F (Si) = n+i � n�i , where n+i is the

number of tangencies at which the orientations agree and n�i is the number

of tangencies at which the orientations disagree. Thus k�k =Pn+i � n�i .

Since ni = n+i +n�i , we have
Pn+i +Pn�i = k�k =Pn+i �Pn�i , whence

all the nonnegative integers n�i must be zero. This proves the lemma.

Because of the lemma, we may define a framing Ni of Si with !(Ni) > 0
everywhere. This framing may be extended to a product neighborhood struc-

ture on Ui � Si, where h : Si � [�1; 1℄ ! Ui is a diffeomorphism, h�( ��t ) = Ni
on Si = Si � 0 and !(h�( ��t )) > 0. Let B : [�1; 1℄ ! [0;1℄ be a smooth func-

tion vanishing on jxj > 12 with
R +1�1 B = +1. Letting �i = (�2h�1)�Bdt we find

that, for all s > 0, (! + s�i)(h� ��t ) > 0 on U . But since ! + s�i = ! away fromU , we see that the closed 1-form ! + s�i is nonsingular.

The portion of theorem 14.6 already proven gives [! + s�i℄ 2 intT . Thus,[�i℄ = lims!1 [!+s�i℄s 2 T \H1(M ;Z), for all i. So replacing [!℄ by [!℄ + s1[�1℄ +� � �+ si�1[�i�1℄, we see inductively that [!℄+ s1[�1℄+ � � �+ si[�i℄ is nonsingular

for all s1; : : : ; si � 0. In particular, for all s � 0, [!℄ + s� = [!℄ + sP[�i℄ is

nonsingular.

We just showed that if � = [!℄ 2 intT is a nonsingular class, then �+ s� is

nonsingular for all � 2 T\H1(M ;Z) and s � 0. Now consider an arbitrary 
 2intT; 
 6= �. By convexity we may find v1; : : : ; vd 2 intT; d = dimH1(M ;R),
so that 
 is in the interior of the d-simplex spanned by �; v1; : : : ; vd. We may

choose v1; : : : ; vd rational, say vj = 1N�j , someN 2 Z+, �j 2 intT \H1(M ;Z).
We have 
 = t0� +Pdj=1 tj�j , with all tj > 0. By induction on k, we see that

each � + Pkj=1(tj=t0)�j is nonsingular. Setting k = d and multiplying by
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 is nonsingular as well. Thus if one point � 2 intT is

nonsingular, all 
 2 intT are nonsingular.

We will sharpen Thurston’s theorem 14.6 in the case when m is atoroidalatoroidal

(contains no incompressible imbedded tori) andH1(M ;Z) 6�= Z. We show (the-

orem 14.11) that a nonsingular face T (i.e., one containing a nonsingular class)

of the unit k k-ball determines a canonical flow �t : M ! M such that intT
consists precisely of all [!℄ where ! is a closed 1-form with !(���t ) > 0. We

must begin by relating the atoroidal condition to Thurston’s classification of

surface homeomorphisms.

We suppose f : M ! S1 is a fibration. Then flows t for which ddtf( tm) >0 (we will only consider flows having a continuous time derivative) deter-

mine an isotopy class of surface homeomorphisms. For any k 2 K = f�1(1),
we consider the smallest time T (k) > 0 for which  T (k)(k) 2 K . This mapT (k) : K ! (0;1) is smooth (since the flow lines of  are transverse to K)

and the return map R(k) =  T (k)(k) is a homeomorphism. By varying  , wereturn map

obtain an isotopy class of homeomorphisms of the fiber K as return maps;

this isotopy class will be called the monodromy of f and denoted m(f).monodromy

We remark that the monodromy of f is determined algebraically by the co-

homology class � = f�[d�℄ 2 H1(M ;Z), or equivalently by the map f� : �1M !�1S1. First assume that � is indivisible. From the exact homotopy sequence1�!�1K�!�1M f��!�1S1�!1, we see that �1M is the semidirect product�1K �� Z, where � is the outer automorphism of �1K determined by the

monodromy of f . Thus �1K (= ker f�) and � are determined by f� alone.

Clearly the topological type of K is determined by �1K ; but Nielsen also

showed that isotopy classes inDi�(K) correspond 1-1 to outer automorphisms

of �1K . In general, � = n�0 is a positive integer multiple of an indivisible class�0, and n is determined by 
okerf� = Z=nZ. We see that the fiber of f consists

of n copies of K (where �1K = ker f�) which are permuted cyclically by the

monodromy. The nth power of the monodromy preservesK and acts on �1K
by � (the outer automorphism of ker f�.) Thus we may unambiguously speak

of the monodromy of a nonsingular class � 2 H1(M ;Z).

We say that the monodromy m(f) of a fibration f : M ! S1 is pseudo-pseudo-Anosov

Anosov if the isotopy class has a pseudo-Anosov representative R. This rep-

resentative is then uniquely determined within strict conjugacy, that is forstrict conjugacy
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any two pseudo-Anosov representatives R0; R1 2 m(f) there will be a hom-

eomorphism g isotopic to the identity for which R0g = gR1.

Proposition 14.9 Suppose that H1(M ;Z) 6= Z. Given a fibration f : M ! S1, M
is atoroidal precisely when the monodromy m(f) is pseudo-Anosov and the fibers off are not composed of tori.

Proof. Suppose M contains an incompressible torus S and let F be the fo-

liation of M by the fibers of f . Again using the result of Thurston’s thesis

discussed in the proof of theorem 14.6 [Rou73, Thu72], we may isotope S to

either lie in a leaf of F or to be transverse to F (since �(S) = 0, the presence

of saddle tangencies would force there to be tangencies of other types.) If S
does lie in a leaf, then the fibers of f are composed of tori parallel to S. If the

torus S is transverse to F , then one may define a flow  on M that preservesS and satisfies ddt (f Æ  t) = 1. Thus the return map  1 : K ! K; K = f�1(1),
preserves the family of curves S \K . Since S is incompressible, each of those

curves is homotopically nontrivial inK . If the monodromy of f were pseudo-

Anosov, these curves would grow exponentially in length under iteration by 1. So we see that when m(f) is pseudo-Anosov and the fibers of f are not

unions of tori, then M must be atoroidal.

Conversely, when the fibers of f are unions of tori, these tori are essential.

So we assume the components of the fibers have higher genus and that the

monodromy is not pseudo-Anosov (hence reducible or periodic) and look for

an incompressible torus. If m(f) is reducible, we may construct  with ddt (f Æ t) = 1 for which  1 cyclically permutes a family of homotopically nontrivial

closed curves C � K . Then f tCg is an incompressible torus. If m(f) has

period n, after Nielsen (see exposé 11), we may choose  with ddt (f Æ  t) = 1
for which  n = identity. Thus M is Seifert fibered. One may easily compute

that H1(M ;Z) �= Z2g+1, where g is the genus of the topological surface which

is the orbit space of  [Orl72]. As we assumed H1(M ;Z) 6= Z, we must have

a homologically nontrivial curve in this orbit space which corresponds to an

incompressible torus in M .

We may consider flows transverse to a fibration over S1 from three view-

points. The first is to begin with the fibration and produce transverse flows
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140 (FLP — Exposé 14: Draft – RCSversion 1.4) May 30, 2002

and an isotopy class of return maps. The second is to begin with a homeo-

morphism R : K ! K and produce a fibration over S1 with fiber K and a

transverse flow � with return map R. This is the well-known mapping torus

construction, for which one sets X = K � [0; 1℄=(k; 1) = (R(k); 0); f : X !([0; 1℄=0 = 1) = S1 the natural fibration and defines  to be the flow along the

curves k � [0; 1℄ with unit speed. Clearly  1jK � 0 = R is the return map of , as desired. This flow  is called the suspension of R. The third viewpointsuspension

is to begin with a flow  on X and to seek a fibration f over S1 to which  
is transverse — a fiber K is called a cross-section to  . Note that K and  cross-section

determine the return map R and an isotopy class of fibrations f .

In general, one has little hope of finding cross-sections, since many man-

ifolds don’t fiber over S1 at all. But there is a classification of the fibrations

transverse to  which is especially concrete in the case of interest to us now.

Suppose that some cross-section K to a flow � has a return map R : K !K admitting a Markov partition M = fS1; : : : ; Smg (see exposé 10 — the case

we need is whenR is pseudo-Anosov). There is a directed graph with verticesS1; : : : ; Sm and arrows Si ! Sj for each i and j for which R(Si) meets int(Sj).
A loop ` for M is a cyclic sequence of arrows Si1 ! Si2 ! � � � ! Sik ! Si1 .loop

Each loop ` determines a periodic orbit for R and thus a periodic orbit 
(`)
for �. If all of i1; : : : ; ik are distinct, we call ` minimal. There are only finitelyminimal

many minimal loops `.
We now discuss the classification and existence of cross-sections to flows.

Given a flow  on a compact manifold X there is a nonempty compact set of

homology directions D � H1(X;R)=R+, where the quotient space is topolo-

gized as the disjoint union of the origin and unit sphere. A homology direc-homology direction

tion for  is an accumulation point of the classes determined by long, nearly

closed trajectories of  . We note that when K is a cross-section to  , K is

normally oriented by  and so determines a dual class u 2 H1(X;Z). LetCZ( ) := fu 2 H1(X;Z) j u is dual to some cross-section K to  g.

Theorem 14.10 ([Fri82b, Fri76]) CZ = fu j u(D ) > 0g. If �, as above, has a

cross-section K and the return map R admits a Markov partition M, then CZ(�) =fu j u(
(`)) > 0 for all minimal loops ` for Mg.

Thus CZ( ) consists of all lattice points in a (possibly empty) open convex

cone CR( ) := fu j u(D ) > 0g � H1(X;R) � f0g. It follows easily from
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theorem 14.10 that CR( ) = f[!℄ j ! is a closed 1-form with !(d dt ) > 0g.

Returning to our discussion of three-manifolds, we call a flow  on M
pseudo-Anosov if it admits some cross-section for which the return map is

pseudo-Anosov. We now describe the cross-sections to pseudo-Anosov flows,

and show they are uniquely determined by their homotopy class among non-

singular flows on M .

Theorem 14.11 Suppose M fibers over S1. Then each flow  on M that admits a

cross-section determines a nonsingular face T ( ) for the norm k k on H1(M ;R).
Here T ( ) = fkuk = �� ?(u)g and  ? denotes the normal plane bundle to the

vector field d dt . One has CR( ) � intT ( ).
For any pseudo-Anosov flow � on M , CR(�) = intT (�).
The face T (�) (or the class ��?) determines the pseudo-Anosov flow � up to strict

conjugacy. Thus any nonsingular face T on an atoroidal M with H1(M ;Z) 6= Z
determines a strict conjugacy class of pseudo-Anosov flows.

Proof. For u 2 CZ( ), there is a cross-section K to  dual to u. We havekuk = ��(K), by proposition 14.4. Since the restriction  ?jK is the tangent

bundle of K , we have ��(K) = �� ?(u). Thus �� ? is a linear functional

on H1(M ;R) that agrees with k k on C Z( ) and the first paragraph of theo-

rem 14.11 is shown.

We now observe

Lemma 14.12 Any cross-section K to a pseudo-Anosov flow � on M will have

pseudo-Anosov return map RK .

Proof. By definition, there is some cross-section L to � with pseudo-Anosov

return map RL, but K and L will generally not be homeomorphic (one calls

return maps to distinct cross-sections flow-equivalent.) In any case, any struc- flow-equivalent

ture on L invariant under RL is carried over to a structure on K invariant

under RK under the system of local homeomorphisms between K and L de-

termined by �. This shows that RK preserves a pair of transverse foliationsFuK and FsK with the same local singularity structure as a pseudo-Anosov

diffeomorphism.

We now show that the closure P of any prong P ofFuK orFsK is the compo-

nent K0 of K which contains P . By passing to a cyclic cover Mn ! M deter-

mined by the composite homeomorphism �1M ! (�1M=�1K0) �= Z! Z=nZ
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and restricting to the cross-section K0 � Mn we may assume that K is con-

nected and that RK leaves P invariant (choose n so that P is invariant underRnK0). Consider the closedRL invariant subset f�tPg\L = I . Since I contains

the closure of a prong for the pseudo-Anosov diffeomorphism RL, we know

that I is dense in some component L0 � L. As L0 is a cross-section to �, we

find that f�tPg =M . As P is RK invariant, we find P = K as desired.

Similarly we can check that the foliations FuK and FsK have no closed

leaves.

It follows by the Poincaré-Bendixson theorem that each leaf closure con-

tains a singularity, and thus a prong. So we find that all leaves of FsK and FuK
are dense in their component of K .

We may see from this density of leaves and the fact that the local stretching

and shrinking properties of RK are the same as those of RL that the Markov

partition construction of exposé 10 works for RK . (It is easiest to construct

birectangles for RK by “analytic continuation” from immersed birectangles

in L. This makes sense because K and L have the same universal cover.) As

in the Anosov case [RS75], the Parry measures for the one-sided subshifts of

finite type associated to M push forward to give transverse measures on FuK
and FsK that transform under RK by factors ��1K and �K , for some �K > 1.

As leaves are dense, these measures have positive values on any transverse

interval but vanish on points. Thus RK is pseudo-Anosov.

Now suppose that �1 and �2 are pseudo-Anosov flows on M for whichCR(�1) intersects CR(�2). Then we may choose u 2 CR(�1)\CR(�2)\H1(M ;Z)
and find fibrations fi : M ! S1 with ddt (fi Æ �it) > 0 and u = [f�i (d�)℄; i = 1; 2.

As discussed earlier, u determines m(fi). This gives a homeomorphismh : M ! M such that f1 Æ h = f2 where h acts on �1M by the identity. Thush is isotopic to the identity [Wal68]. Hence, by this preliminary isotopy, we

assume f1 = f2 = f and denote the fiber by K .

Each �i determines a return map Ri : K ! K . By the lemma above, theseRi are pseudo-Anosov. Since the maps Ri are in the same isotopy class h(f),
they are strictly conjugate by the uniqueness of pseudo-Anosov diffeomor-

phisms (exposé 12).

Now suppose that gR1 = R2g, with g isotopic to the identity. Then the

map C0 : M ! M defined by C0(�1sk) = (�2sgk), k 2 K , 0 � s � 1, is a
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homeomorphism conjugating flows �1 and �2 and f Æ C0 = f . As C0jK = g
is isotopic to the identity, C0 may be isotoped to C1 where f Æ Ct = f , fort 2 [0; 1℄ and C1 fixes K . Since Di� K is simply connected [Ham66], we may

isotope C1 to the identity C2 (through Ct satisfying f Æ Ct = f , t 2 [1; 2℄.)
We have shown so far that if �i are pseudo-Anosov flows, i = 1; 2, then

either CZ(�1) equals CZ(�2) or is disjoint from it, since conjugating a flow by

conjugacy isotopic to the identity doesn’t affect CZ. It follows easily that the

open cones CR(�1) and CR(�2) are either disjoint or equal.

Now suppose that � is pseudo-Anosov but CR(�) is a proper subcone ofintT (�). By theorem 14.10, CR(�) is defined by linear inequalities with inte-

ger coefficients, and so there is an integral class u 2 intT \ �CR (�). Then u
is nonsingular (theorem 14.6), the fibration corresponding to u has pseudo-

Anosov monodromy (proposition 14.9) and one obtains an Anosov flow  
with u 2 CR( ). This shows that CR( ) and CR(�) are neither disjoint nor

equal, contradicting the previous paragraph.

Thus we see that pseudo-Anosov flows satisfy C(�) = intT (�).
Theorem 14.11 shows that pseudo-Anosov maps satisfy an interesting ex-

tremal property within their isotopy class. Suppose h0 : K ! K has suspen-

sion flow  0t : M ! M , where we take K connected and dual to the indivisi-

ble class u 2 H1(M ;Z). Given an isotopy ht starting at h0, we may deform  0
through flows  t with cross-section K and return map ht. We regard u�1(1)
as a subset of H1(M ;R)=R+ and note that we always have D t � u�1(1). By

the Wang exact sequence:H1(K;R)h0��Id�! H1(K;R)�!H1(M ;R) u�!R�!0;
we may identify u�1(1) with u�1(0) = 
oker(h0�� Id) by some fixed splitting

of u. Whenever hs = ht, the simple connectivity of Di� K [Ham66] implies

that D s = D t . Thus we may unambiguously associate a set of homology

directionsDh � 
oker(h0��Id) to homeomorphisms h isotopic to h0. Now as-

sume h0 is pseudo-Anosov. By theorem 14.11, we have CR( s) � intT ( s) =intT ( 0) = CR( 0). Thus we find, using theorem 14.10, that the convex hull

ofDhs (which may be identified with the asymptotic cycles of  s in this situa-

tion [Fri82a, Sch57]) always contains the convex polygon determined at s = 0.

Thus we may say that pseudo-Anosov diffeomorphisms have the fewest gen-

eralized rotation numbers in their isotopy class.
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We may analyze the topological entropy of the return-maps RK of the

various cross-sections K to a pseudo-Anosov flow C. We parameterize these

cross-sections K by their dual classes u 2 H1(M ;Z) and define h : CZ(�) !(0;1) by h([K℄) = h(RK), the topological entropy of RK . We showed in

[Fri82a] that 1=h extends uniquely to a homogeneous, downwards convex

function 1=h : CR(�) ! [0;1℄ that vanishes exactly on �CR(�). Thus h(u)
may be defined for all u 2 H1(M ;R) in a natural way. The smallest value

of h on intT \ fkuk = 1g defines an interesting measure of the complexity

of � (or equivalently, by theorem 14.11, of the face T = T (�)). The integral

points at which h is the largest give the “simplest” cross-section to the flow �
(see [Fri82a]).

If one is given a pseudo-Anosov diffeomorphism h : K ! K and a Markov

partition M for h, theorems 14.10 and 14.11 give an effective description of

the nonsingular face T determined by the suspended flow �t : M ! M ofh, in terms of the orbits corresponding to minimal loops. As the computa-

tion of minimal loops in a large graph is difficult, we observe that there is a

more algebraic way of using M to obtain a system of inequalities definingT . (We refer the reader to [Fri82a] for details, where we used this method

to construct a rational zeta function for axiom A and pseudo-Anosov flows.)

For sufficiently fine M, we may associate to M a matrix A with entries inH1(M ;Z)=torsion = H . The expression det(I � A), regarded as an element

in the group ring of the free abelian group H , may be uniquely written as1 +P aigi, gi 2 H � f0g, ai 2 Z� f0g, gi distinct. Then T is defined by the

inequalities u(gi) > 0.

To illustrate Thurston’s theory, it is convenient to work on a bounded M3.

The norm considered above can be extended to such M by omitting spheres

and discs before computing the negative Euler characteristic. One should re-

strict to the case where �M is incompressible, and then theorems 14.2 and

14.6 and proposition 14.4 extend [Hem76, Thu86].

We let K be the quadruply connected planar region and h the indicated

composite of the two elementary braids (figure 14.1) which fixes the outer

boundary component. We will let M be the mapping torus of h and computek k. Rather than finding a pseudo-Anosov map isotopic to h, which would

only help compute one face, we will instead compute ker(u : �1M ! Z) for

several indivisible u 2 H1(M ;Z). When this kernel is finitely generated, the-
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h

α

γ

β

Figure 14.1:

orem 14.2 shows u is nonsingular and proposition 14.4 enables us to computekuk. From a small collection of values of k k, theorem 14.6 allows us to deduce

all the others, indicating the existence of nonsingular classes that would be

hard to detect using only theorem 14.2.

We first compute �1M = �1K �Z. Writing �1K as the free group on the

loops �; � and 
 shown in the diagram, we find:�1M = D�; �; 
; t ��� t�1�t = 
; t�1�t = 
�1�
; t�1
t = (
�1�
)�(
�1�
)�1E= D�; �; 
; t ��� t�1�t = 
; t�1�t = 
�1�
; 
�t = �t�E= D
; t ��� (t
�1t
t�1
)2 = 
(t
�1t
t�1
)tE :
Abelianizing gives H1(M ;Z) = Z
�Zt. Suppose u 2 H1(M ;Z) is indivisible,

so that a = u(
) and b = u(t) are relatively prime. The Reidemeister-Schreier

process gives a presentation for ker(u : �1M ! Z) (essentially by comput-

ing the fundamental group of the infinite cyclic covering corresponding to u)

which is very ungainly for large a. When a = 1, one finds the relatively simple

expression:ker u = Dti ��� ti ti+b�1 t�1i+b ti+b+1 ti+2b t�1i+2b+1 = ti+1 ti+b t�1i+b+1 ti+b+2E :
For b > 1, this relation expresses ti in terms of ti+1; : : : ; ti+2b+1 and expressesti+2b+1 in terms of ti; : : : ; ti+2b. Thus keru is free on t1; : : : ; t2b+1. Similarly,

if b < �1, then ker u is free on t1; : : : ; t1�2b and if b = 0, then keru is free
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on t1; t2; t3. If b = �1, however, one may abelianize and obtain (ker u)ab =Z[t; t�1℄=(2t3 � 3t2 + 3t � 2) which maps onto the collection of all 2nth roots

of unity, and so keru is not finitely generated.

By theorem 14.2 (Stallings), there is a fibration for u = (1; b) when b 6= �1,

with fiber Ku satisfying �1(Ku) = ker u. By proposition 14.4, kuk = ��(Ku),
which is clearly �1 + rank(H1(Ku)) = ( j2bj b > 1; b 2 Z2 b = 0 :

We will see that these values determine k k completely. Using the dual

basis to (
; t), we know that:k(1; b)k = ( j2bj b > 1; b 2 Z2 b = 0 :
But k(1; b)k is a convex function f of b by theorem 14.3 and it takes integer

values at integer points. By convexity, f(1) must be 2 or 3. Were f(1) = 3,

convexity would forcef(x) = ( 2 + x for 0 � x � 22x for x � 2
and then (1; 2) would not lie in an open face of the unit ball, contradict-

ing theorem 14.6. Thus one must have f(1) = 2, and likewise, f(�1) = 2.

By convexity, we find f(x) = max(j2xj; 2). Homogenizing shows k(a; b)k =max(j2aj; j2bj), i.e., kuk = max(ju(2
)j; ju(2t)j).
By theorem 14.6, u 2 H1(M ;R) is nonsingular () ju(
)j 6= ju(t)j.
This example embeds in a larger one, constructed with the mapping torusM0 of the transformation h3 (M0 is a triple cyclic cover of M ). H1(M0;Z) is

free abelian on �; �; 
; t, so there is a norm on H1(M0;R) whose restriction

to H1(M ;R) �= fu 2 H1(M0;R) j u(�) = u(�) = u(
)g is 3k k. We leave its

computation as an exercise.
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Chapter 15
A presentation of the group of diffeotopies of
a compact, orientable surface.

by F. Laudenbach
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Appendix A
The “pair of pants” decomposition of a
surface.

by A. Fathi

In the first section, we will give a proof of the inequality used in the proof of

theorem 4.4. In the second part, we apply this inequality to modify by a twist

a pair-of-pants decomposition of the surface M .

First part:

We have a system �0; �1; : : : ; �k of simple, mutually disjoint curves onM . On the other hand, 
 is a simple curve whose intersection with each �j
is minimal (among curves isotopic to 
). We are given positive integers nj .
We construct � by making a positive twist along the �j operate on 
, for j =0; : : : ; k. (The notion of positive twist does not depend on the orientation ofM .)

Proposition A.1 For each simple curve �, we have the formula����i([�℄; [�℄) �Xj nj � i([
℄; [�j ℄) � i([�j ℄; [�℄)���� � i([
℄; [�℄)
where “[ ℄” means “isotopy class of”.

Proof. For such a curve � as described, � coincides with 
 outside of tubular

neighbourhoods of �j . The position of � and 
 with the [???] endpoints of

a common arc is shown in figure A.1. Thus � is approximable by a curve

148
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denoted by �0 which crosses once each interval [???] of �\
. This is due to the

fact that all of the twists are positive. By using the criterion of proposition 3.10,

we verify that 
ard(
 \ �0) = i([
℄; [�℄).
Γ

Γ γ

γ

Figure A.1:

We observe that 
\�0 is the image of a continuous map, defined on
Pj nj �i([
℄; [�j ℄) copies of S1, nj � i([
℄; [�j ℄) copies of S1 going in the free homotopy

class of [�j ℄. Thus, we have the inequality
ard(� \ (
 [ �0)) �Xj nj � i([
℄; [�j ℄) � i([�j ℄; [�℄):
If � does not pass through the points of intersection of 
 with �0, we have
ard(� \ (
 [ �0)) = 
ard(� \ 
) + 
ard(� \ �0):
If we take for � a geodesic of a metric of curvature �1 for which 
 and �0 are

geodesic (such a metric exists by proposition 3.10), we have
ard(� \ (
 [ �0)) = i([�℄; [�℄) + i([
℄; [�℄):
which gives one of the desired inequalities.

It remains to prove thati([�℄; [�℄) �Xj nj � i([
℄; [�j ℄) � i([�j ℄; [�℄) � i([
℄; [�℄):
Here we use the representative � rather than �0. We chose � in minimal posi-

tion with respect to the �j and not passing through the points of intersection
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of 
 with �j . Each times that � cuts �j , � crosses the corresponding tubular

neighbourhood. It thus gives nj � i([
℄; [�j ℄) points of intersection with �. We

therefore get
ard(� \ �) = 
ard(� \ 
) +Xj nj � i([
℄; [�j ℄) � i([�j ℄; [�℄):
If, additionally, � has minimal intersection with 
, we have 
ard(� \ 
) =i([
℄; [�℄); the left side is always greater that or equal to i([�℄; [�℄).
Second part:

Let M be a closed surface of genus g > 1. Let K = fK1; : : : ;K3g�3g be a

system of simple, mutually disjoint curves on M with the following proper-

ties:

1. Kj is [???];

2. If one cuts M along these curves, one obtains (2g � 2) pairs-of-pants

(disks with two holes).

We can easily construct a simple curve � which cuts every Kj in an es-

sential way: i([�℄; [Kj ℄) 6= 0. Let � be a diffeomorphism of M , which is equal

to the identity outside of a tubular neighbourhood of �, and coincides with a

single Dehn twist in the collar. We setK 0j = �(Kj):
Clearly, the systemK0 = fK 01; : : : ;K 03g�3g possesses the properties (1) and (2).

Proposition A.2 For all j; k, we havei([Kj ℄; [K 0k℄) 6= 0
Proof. From the inequality of proposition A.1, it follows that����i([K 0k℄; [Kj ℄)� i([Kk℄; [�℄)i([�℄; [Kj ℄)���� � i([Kk℄; [Kj ℄) = 0
Remark:We may take�with i([�℄; [Kj ℄) = 2 for all j. We then obtain i([K 0k℄; [Kj ℄) =4 for all j; k.
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Appendix B
Spines of manifolds of dimension 2

by V. Poénaru

Let N be a compact, connected manifold of dimension 2, with a non-empty

boundary. IfN is triangulated and if L1 � L2 � N are two sub-complexes, we

say that we pass from L1 to L2 by a dilatation of dimension n fi there exists

an n-simplex � of N and a face � 0 of � such thatL2 � L1 � int � � int � 0
(here int designates the open cell.) The inverse passage is called collapsing. collapsing
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Appendix C
Explicit formulas for Measured Foliations

by A. Fathi
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Appendix D
Estimates of hyperbolic distances

by A. Fathi
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158 (FLP — Exposé 15: Draft – RCSversion 1.4) May 30, 2002

[Nie44] J. Nielsen. Abbildungsklassen endlicher Ordnung. Acta

Mathematica, 75:23–115, 1944.

[NS87] V.V. Nikulin and I.R. Shafarevich. Geometries and Groups. Springer

Verlag, Berlin-Heidelberg, 1987.

[OR69] Peter Orlik and F. Raymond. On 3-manifolds with local SO(2)
action. Quarterly Journal of Mathematics Oxford, 20:143–160, 1969.

[Orl72] Peter Orlik. Seifert Manifolds, volume 291 of Lecture Notes in

Mathematics. Springer Verlag, New York, 1972. Cited on

page(s) 139

[Orn74] D. Ornstein. Ergodic theory, randomness and dynamical systems,

volume 5 of Yale Mathematical monographs. Yale University Press,

New Haven, CT, 1974. Cited on page(s) 126

[OVZ67] P. Orlik, E. Vogt, and H. Zieschang. Zur Topologie gefaserter

dreidimensionaler Mannigfaltigkeiten. Topology, 6:49–64, 1967.

[Pal60] R. Palais. Local triviality of the restriction map for embeddings.

Comm. Math. Helv., 34:305–312, 1960. Cited on page(s) 85

[Par64] W. Parry. Intrinsic markov chains. Trans. Amer. Math. Soc.,

112:55–66, 1964. Cited on page(s) 126
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Mathematica, 60:147–288, 1933.

[Sha77] I. R. Shafaraevich. Basic Algebraic Geometry. Springer Verlag, New

York, 1977.

[Sin76a] Y. G. Sinai. Introduction to ergodic theory, volume 18 of Mathematical

Notes. Princeton University Press, Princeton, NJ, 1976.

[Sin76b] Y. G. Sinai. Introduction to ergodic theory (Math. notes). Princeton

University Press, Princeton, 1976. Cited on page(s) 9, 126

[Sma59] Steve Smale. Diffeomorphisms of the 2-sphere. Proc. Amer. Math.

Soc., 10:621–626, 1959. Cited on page(s) 17

[Sma67] Steve Smale. Differentiable dynamical systems. Bulletin of the

American Mathematical Society, 73:747–817, 1967.

[Spr66] G. Springer. Introduction to Riemann surfaces. Addison-Wesley, New

York, 1966. Cited on page(s) 83

[ST80] H. Seifert and W. Threlfall. A Textbook of Topology. Academic Press,

New York, 1980.



D
R

A
FT

30
 M

ay
 2

00
2
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Index(n; �)-separated, 106(n; �)-spanning, 106(F ; �)-rectangle, 100(FS ;FU )-rectangle, 117S(M) = S , 1T (M) = T , 6T (P 2), 33

Anosov, 8

Dehn twist, 8, 86

Markov partition, 119

Teichmüller space, 6, 33, 83

Teichmüller surface, 6

Thurston compactification, 7

algebraic intersection number, 2

atoroidal, 138

big diagonal, 18

birectangle, 117

birectangle, good, 118

canonical representative, 55

collapsing, 151

colored braid group, 18

cross-section, 140

dedouble, 101

displacement, 91

equivalent, 6

in the sense of Schwartz, 5

in the sense of Whitehead, 5m-equivalent, 5

flow-equivalent, 141

faces, 63

geometric intersection number, 2

good system of transversals, 100

homology direction, 140

incompressible, 133

irrational, 98

irreducible, 132

length, 108

loop, 140

measured foliation, 4

metric adapted to the decomposi-
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metric covering map, 107

metric entropy, 9

minimal, 140

monodromy, 138

normal form, 57

pseudo-Anosov, 8, 138
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quasi-transverse, 68

rays, 3

return map, 138

saddle, 136

shift, 114

sides, 63

simple, 77

sphereless, 133

spine, 73, 79

strict conjugacy, 138

supporting, 135

suspension, 140

topological entropy, 9, 106

total variation, 4
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transverse invariant measure, 62

truncated hexagon, 39

twist, 85

unglue, 97
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