
1. Local consequences of differentiation

(1) Optimization

(a) Let U be a subset of Rn.

(b) We say that f : U → R attains a maximum at p ∈ U iff

f(p) = sup{f(x) | x ∈ U}.

(c) We say that f : U → R attains a minimum at p ∈ U iff

f(p) = inf{f(x) | x ∈ U}.

(d) Critical points

(i) Let U be an open subset of Rn.

(ii) p is a critical point of f if and only if dfp(v) = 0 for all v ∈ Rn.

(iii) Nota Bene: Since dfp is linear, need only check that dfp(ei) = 0
where {ei} is a basis. In other words, only need to check that
Jacobian is the 0 matrix.

(iv) Theorem: Let f : U → R be differentiable. If f attains a
maximum or minimum at p, then p is a critical point of f .

(A) Consider gv(t) = g(p+ tv), gv : U ′ ⊂ R→ R.

(B) By assumption g attains maximum at 0.

(C) Thus if t > 0, then

gv(t)− gv(0)
t− 0

≤ 0

and hence g′v(0) ≤ 0,

(D) and if t < 0, then

gv(t)− gv(0)
t− 0

≥ 0

and hence g′v(0) ≥ 0.

(E) Thus dfp(v) = g′(0) = 0.

(e) Problem: How do we determine whether a critical point is a maxi-
mum, a minumum, or neither?

(i) In one dimension: second derivative test or first derivative test.

(ii) In higher dimensions: use second derivative test in every direc-
tion.

(f) Second derivatives and Hessian

(i) Fix a direction v =
∑

i ai · ei

1
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(ii) We have

g′v(t) = dfp+tv(v)

=
∑

i

aidfp+tv(ei)

=
∑

i

ai
∂f

∂xi
(p+ tv)

(iii) and then

g′′v (t) = d

(∑
i

ai
∂f

∂xi

)
p+tv

(v)

=
∑

i

ai · d

((
∂f

∂xi

)
p+tv

(v)

)

=
∑

i

ai

∑
j

aj · d
(
∂f

∂xi

)
(ej)

=
∑

i

ai

∑
j

aj ·
∂

∂xj

(
∂f

∂xi

)
(p+ tv)

=
∑
i,j

aiaj
∂2f

∂xj∂xi
(p+ tv)

(iv) The Hessian of f at p is the n× n matrix of second partials:

Hess(f)p =
[

∂2f

∂xi∂xj
(p)
]
.

(A) From above computation we have

g′′v (0) = vT ·Hess(f)p · v.

(B) If the second derivative of f is continuous at p (i.e. sec-
ond partials continuous) then the Hessian is a symmetric
matrix.

(C) Thus, it has n real eigenvalues: λ1 ≤ . . . ≤ λn. (Spectral
Thm)

(D) By usual proof of spectral theorem λ1 (resp. λn) is the
smallest (largest) value of v 7→ vT · Hess(f)p · v on unit
sphere.

(E) Among unit vectors v, the function v 7→ g′′v (0) is maxi-
mized at the eigenvector(s) associated to λn.

(F) Among unit vectors v, the function v 7→ g′′v (0) is mini-
mized at the eigenvector(s) associated to λ1.
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(g) Second derivative test: Suppose f has second partials defined and
continuous on U and dfp ≡ 0. Let λ1, . . . , λn be the eigenvalues of
the Hessian of f at p.

(i) If ∀i, we have λi > 0, then f attains a minimum at p.

(ii) If ∀i, we have λi < 0, then
f attains a maximum at p.

(iii) If λi < 0 < λj for some i and j, then p is neither a minimum
or maximum.

(iv) If λi = 0 for some i then must find additional informaton e.g.
third derivatives.

(h) Exercise: Does f(x, y) = x2 + 4xy + 3y2 attain a (local) maximum
or minimum at (x, y) = (0, 0).

(i) Functions without maxima or minima

(i) Let λ±(p) denote the least/greatest eigenvalue of the Hessian
of f at p.

(ii) Nota Bene: If for each p ∈ U , we have λ−(p) < 0 < λ+(p),
then f attains neither a maximum or a minimum in U .

(iii) A C2 function f : U → R is called harmonic if and only if for
each p ∈ U the sum of the eigenvalues of the Hessian of f at p
equals zero.

(iv) If f harmonic, then λ−(p) ≤ 0 ≤ λ+(p).

(v) Maximum Principle: Harmonic functions do not attain max-
ima or minima. (Does not follow immediately from above.)

(2) Local inversion

(a) We will say that f : U → Rn is C1 locally invertible at p ∈ U iff

(i) ∃ open nbhd V of f(p),

(ii) ∃ g : V → U such that ∀y ∈ V

f(g(y)) = y,

and

(iii) g has a continuous first derivative with dgf(p) = df−1
p .

(b) Suppose that the derivative of f : U → Rn exists and is continuous
on U ⊂ Rn. If dfp is invertible, then f is locally invertible at p.

(i) Proof: Given y, want to show that we have a unique solution
x to f(x) = y. Then set g(y) equal to this solution.

(ii) Solving f(x) = y is equivalent to finding a fixed point of the
mapping F defined by

F (x) = x+ y − f(x).
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(iii) Want to show F is contraction mapping.

(iv) Reduction to origin: By precomposing with x 7→ x+p and post-
composing with x 7→ df−1

p (f(x)−f(p)) can assume p = f(p) =
0 and dfp is the identity linear transformation. (Alternatively,
could use F (x) = x + y − df−1

p ◦ f(x)).

(v) We have

|F (a)− F (b)| ≤M · |a− b|

where M is sup{||dFx||} over x in the line segment joining a
and b.

(vi) We have dFx = I − dfx, thus, since x 7→ dfx is continuous with
df0 = I, there exists r > 0 so that |x| ≤ r ⇒ ||dFx|| ≤ 1

2 .

(vii) Thus,

|F (a)− F (b)| ≤ 1
2
· |a− b|

and F is a contraction mapping.

(viii) Exercise: Show that F maps {x | |x| ≤ r} into {x | |x| ≤ r}.

(ix) Exercise: Show that g has a continuous first derivative near
f(p) = 0.

(3) Local section

(a) Implicit functions

(i) Suppose m ≤ n and U ⊂ Rn.

(ii) Given f : U → Rm, the q-level set of f is the set

f−1({q}) = {x ∈ Rn | f(x) = q}.

(iii) Wish to realize f−1({q}) as the graph of a function g. A suit-
able function g is called an ‘implicit function’ because it is only
implicitly defined.

(iv) Definition: Let p ∈ f−1({q}) and let V be an open set in Rn−m.
We say that g : V → Rn is a C1 implicit function for f near p
iff

(A) p ∈ g(V ),

(B) g is injective,

(C) g has a continuous derivative, and

(D) f(g(z), z) = q for all z ∈ V .

(v) Example:

(A) f(x1, x2) = x2
1 + x2

2.

(B) Let q = 1. The point (1, 0) belongs to the 1-level set of f .
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(C) Let V = (−1, 1). Then g : V → R2 defined by

g(y) = (
√

1 + y2, y)

is an implicit function for f .

(b) Constructing implicit function using inverse function theorem:

(i) Rn = Rm × Rn−m: Each vector x ∈ Rn can be written as
(x1, x2) with x1 ∈ Rn and x2 ∈ Rn−m.

(ii) Define F : Rn → Rn by

F

(
x1

x2

)
=

 f

(
x1

x2

)
x2

 .

(iii) If dFp is invertible, then F has a local inverse G:

F ◦G(y) = y.

(iv) Write

G

(
y1
y2

)
=

 g1

(
y1
y2

)
g2

(
y1
y2

)
 .

(v) Then F ◦G(y) = y becomes
f

 g1

(
y1
y2

)
g2

(
y1
y2

)


g2

(
y1
y2

)

 =
(
y1
y2

)
.

(vi) In particular,

g2

(
y1
y2

)
= y2,

(vii) and hence

f

 g1

(
y1
y2

)
y2

 = y1.

(viii) Therefore, if we set

g(z) = g1

(
q
z

)
,

then

f

(
g(z)
z

)
= q.
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(ix) That is, g is the desired implict function.

(x) Note: In practice, one chooses the variables y2 ∈ Rn−m to be
the ones that are to be the domain variables of the impicit
function.

(c) Implicit Function Theorem:

(i) If dFp invertible, then there exists a neighborhood U of p such
that the restriction f |U has an implicit function.

(ii) Alternate version of hypothesis:

(A) Define Lf : Rm → Rm by

Lf (x) =
(
dfp(x)

0

)
.

(B) Exercise: dFp invertible ⇔ Lf invertible.

(d) Example:

(i) Show that there exist functions u = u(x, y) and v = v(x, y)
defined in a neighborhood of (1, 1) so that u(1, 1) = v(1, 1) = 1,

ex2−y2
· u5 − v3 = 0,

and
eu2−v2

· x2 − y2 = 0

(ii) Define f : R4 → R2 by

f


u
v
x
y

 =

(
ex2−y2 · u5 − v3

eu2−v2 · x2 − y2

)
.

(iii) Note that f(1, 1, 1, 1) = (0, 0).

(iv) Reinterpretation of problem: Construct implicit function for
the (0, 0)-level set of f near (u, v, x, y) = (1, 1, 1, 1).

(v) Define F : R4 → R4 by

F


u
v
x
y

 =


ex2−y2 · u5 − v3

eu2−v2 · x2 − y2

x
y

 .

(vi) The Jacobian matrix of F at p = (1, 1, 1, 1) is
5 −3 2 −2
2 −2 2 −2
0 0 1 0
0 0 0 1

 .
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(vii) The determinant of this matrix is −4 6= 0 and hence dFp in-
vertible.

(e) Example continued: Compute ∂u
∂y at (x, y) = (1, 1).

(i) ∂u
∂y (p) is the a12 entry of the Jacobian of g:(

a11 a12

a21 a22

)
.

(ii) Differentiating f(g(x, y), x, y) = 1 gives

(
5 −3 2 −2
2 −2 2 −2

)
·


a11 a12

a21 a22

1 0
0 1

 =
(

0 0
0 0

)
.

(iii) Thus, in particular, we have

−2 + 5a12 − 3a22 = 0

−2 + 2a12 − 2a22 = 0.

(iv) Solving gives a12 = 1/2.

1.1. Additional Exercises.

(1) The function 1
32x

4 +x2y2−x3− y3−xy3 has critical points at (24, 0) and
(0, 0). Determine whether these criticial points are local maximums, local
minimums, or neither.

(2) Let f : Rn → Rn be a differentiable map. Show that if ||dfp − I||2 < 1
2

for all p ∈ Rn, then f is one-to-one, onto, and f−1 is also differen-
tiable. Here || · ||2 denotes the Hilbert-Schmidt norm of a linear trans-
formation: Namely, for each linear transformation L : Rn → Rn, define
||L|| =

∑
i,j L(ei)T · L(ej) where {ei} is the standard basis.

(3) Consider the following system of equations

x · ey = u,

y · ex = v.

(a) Show that there exists an ε > 0 such that given any u and v with
|u| < ε and |v| < ε, the above system has a unique solution (x, y) ∈
R2.

(b) Exhibit a pair (u, v) ∈ R2 such that there exist two distinct solutions
to this system. Justify your answer.


