1. Local consequences of differentiation

- (1) Optimization
 - (a) Let U be a subset of \mathbb{R}^n .
 - (b) We say that $f: U \to \mathbb{R}$ attains a maximum at $p \in U$ iff

$$f(p) = \sup\{f(x) \mid x \in U\}.$$

(c) We say that $f: U \to \mathbb{R}$ attains a minimum at $p \in U$ iff

$$f(p) = \inf\{f(x) \mid x \in U\}.$$

- (d) Critical points
 - (i) Let U be an open subset of \mathbb{R}^n .
 - (ii) p is a critical point of f if and only if $df_p(v) = 0$ for all $v \in \mathbb{R}^n$.
 - (iii) Nota Bene: Since df_p is linear, need only check that $df_p(e_i) = 0$ where $\{e_i\}$ is a basis. In other words, only need to check that Jacobian is the 0 matrix.
 - (iv) Theorem: Let $f : U \to \mathbb{R}$ be differentiable. If f attains a maximum or minimum at p, then p is a critical point of f.
 - (A) Consider $g_v(t) = g(p+tv), g_v : U' \subset \mathbb{R} \to \mathbb{R}$.
 - (B) By assumption g attains maximum at 0.
 - (C) Thus if t > 0, then

$$\frac{g_v(t) - g_v(0)}{t - 0} \le 0$$

and hence $g'_v(0) \leq 0$,

(D) and if t < 0, then

$$\frac{g_v(t) - g_v(0)}{t - 0} \ge 0$$

and hence $g'_v(0) \ge 0$.

- (E) Thus $df_p(v) = g'(0) = 0$.
- (e) *Problem:* How do we determine whether a critical point is a maximum, a minumum, or neither?
 - (i) In one dimension: second derivative test or first derivative test.
 - (ii) In higher dimensions: use second derivative test in every direction.
- (f) Second derivatives and Hessian

(i) Fix a direction $v = \sum_{i} a_i \cdot e_i$

(ii) We have

$$g'_{v}(t) = df_{p+tv}(v)$$

= $\sum_{i} a_{i} df_{p+tv}(e_{i})$
= $\sum_{i} a_{i} \frac{\partial f}{\partial x_{i}}(p+tv)$

(iii) and then

$$g_{v}''(t) = d\left(\sum_{i} a_{i} \frac{\partial f}{\partial x_{i}}\right)_{p+tv}(v)$$

$$= \sum_{i} a_{i} \cdot d\left(\left(\frac{\partial f}{\partial x_{i}}\right)_{p+tv}(v)\right)$$

$$= \sum_{i} a_{i} \sum_{j} a_{j} \cdot d\left(\frac{\partial f}{\partial x_{i}}\right)(e_{j})$$

$$= \sum_{i} a_{i} \sum_{j} a_{j} \cdot \frac{\partial}{\partial x_{j}} \left(\frac{\partial f}{\partial x_{i}}\right)(p+tv)$$

$$= \sum_{i,j} a_{i} a_{j} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(p+tv)$$

(iv) The Hessian of f at p is the $n \times n$ matrix of second partials:

$$\operatorname{Hess}(f)_p = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(p)\right].$$

(A) From above computation we have

$$g_v''(0) = v^T \cdot \operatorname{Hess}(f)_p \cdot v.$$

- (B) If the second derivative of f is continuous at p (i.e. second partials continuous) then the Hessian is a symmetric matrix.
- (C) Thus, it has n real eigenvalues: $\lambda_1 \leq \ldots \leq \lambda_n$. (Spectral Thm)
- (D) By usual proof of spectral theorem λ_1 (resp. λ_n) is the smallest (largest) value of $v \mapsto v^T \cdot \text{Hess}(f)_p \cdot v$ on unit sphere.
- (E) Among unit vectors v, the function $v \mapsto g''_v(0)$ is maximized at the eigenvector(s) associated to λ_n .
- (F) Among unit vectors v, the function $v \mapsto g''_v(0)$ is minimized at the eigenvector(s) associated to λ_1 .

- (g) Second derivative test: Suppose f has second partials defined and continuous on U and $df_p \equiv 0$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the Hessian of f at p.
 - (i) If $\forall i$, we have $\lambda_i > 0$, then f attains a minimum at p.
 - (ii) If $\forall i$, we have $\lambda_i < 0$, then f attains a maximum at p.
 - (iii) If $\lambda_i < 0 < \lambda_j$ for some *i* and *j*, then *p* is neither a minimum or maximum.
 - (iv) If $\lambda_i = 0$ for some *i* then must find additional informaton e.g. third derivatives.
- (h) *Exercise:* Does $f(x, y) = x^2 + 4xy + 3y^2$ attain a (local) maximum or minimum at (x, y) = (0, 0).
- (i) Functions without maxima or minima
 - (i) Let λ_±(p) denote the least/greatest eigenvalue of the Hessian of f at p.
 - (ii) Nota Bene: If for each $p \in U$, we have $\lambda_{-}(p) < 0 < \lambda_{+}(p)$, then f attains neither a maximum or a minimum in U.
 - (iii) A C^2 function $f: U \to \mathbb{R}$ is called *harmonic* if and only if for each $p \in U$ the sum of the eigenvalues of the Hessian of f at p equals zero.
 - (iv) If f harmonic, then $\lambda_{-}(p) \leq 0 \leq \lambda_{+}(p)$.
 - (v) *Maximum Principle:* Harmonic functions do not attain maxima or minima. (Does not follow immediately from above.)
- (2) Local inversion
 - (a) We will say that $f: U \to \mathbb{R}^n$ is C^1 locally invertible at $p \in U$ iff
 - (i) \exists open nbhd V of f(p),
 - (ii) $\exists g: V \to U$ such that $\forall y \in V$

$$f(g(y)) = y,$$

and

- (iii) g has a continuous first derivative with $dg_{f(p)} = df_p^{-1}$.
- (b) Suppose that the derivative of $f: U \to \mathbb{R}^n$ exists and is continuous on $U \subset \mathbb{R}^n$. If df_p is invertible, then f is locally invertible at p.
 - (i) Proof: Given y, want to show that we have a unique solution x to f(x) = y. Then set g(y) equal to this solution.
 - (ii) Solving f(x) = y is equivalent to finding a fixed point of the mapping F defined by

$$F(x) = x + y - f(x).$$

- (iii) Want to show F is contraction mapping.
- (iv) Reduction to origin: By precomposing with $x \mapsto x+p$ and postcomposing with $x \mapsto df_p^{-1}(f(x) - f(p))$ can assume p = f(p) = 0 and df_p is the identity linear transformation. (Alternatively, could use $F(x) = x + y - df_p^{-1} \circ f(x)$).
- (v) We have

4

 $|F(a) - F(b)| \le M \cdot |a - b|$

where M is $\sup\{||dF_x||\}$ over x in the line segment joining a and b.

- (vi) We have $dF_x = I df_x$, thus, since $x \mapsto df_x$ is continuous with $df_0 = I$, there exists r > 0 so that $|x| \le r \Rightarrow ||dF_x|| \le \frac{1}{2}$.
- (vii) Thus,

$$|F(a) - F(b)| \le \frac{1}{2} \cdot |a - b|$$

and F is a contraction mapping.

- (viii) Exercise: Show that F maps $\{x \mid |x| \le r\}$ into $\{x \mid |x| \le r\}$.
- (ix) Exercise: Show that g has a continuous first derivative near f(p) = 0.

(3) Local section

- (a) Implicit functions
 - (i) Suppose $m \leq n$ and $U \subset \mathbb{R}^n$.
 - (ii) Given $f: U \to \mathbb{R}^m$, the q-level set of f is the set

$$f^{-1}(\{q\}) = \{x \in \mathbb{R}^n \mid f(x) = q\}.$$

- (iii) Wish to realize $f^{-1}(\{q\})$ as the graph of a function g. A suitable function g is called an 'implicit function' because it is only implicitly defined.
- (iv) Definition: Let $p \in f^{-1}(\{q\})$ and let V be an open set in \mathbb{R}^{n-m} . We say that $g: V \to \mathbb{R}^n$ is a C^1 implicit function for f near p iff
 - (A) $p \in g(V)$,
 - (B) g is injective,
 - (C) g has a continuous derivative, and
 - (D) f(g(z), z) = q for all $z \in V$.
- (v) Example:
 - (A) $f(x_1, x_2) = x_1^2 + x_2^2$.
 - (B) Let q = 1. The point (1, 0) belongs to the 1-level set of f.

(C) Let
$$V = (-1, 1)$$
. Then $g: V \to \mathbb{R}^2$ defined by

$$g(y) = (\sqrt{1+y^2}, y)$$

is an implicit function for f.

- (b) Constructing implicit function using inverse function theorem:
 - (i) $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$: Each vector $x \in \mathbb{R}^n$ can be written as (x_1, x_2) with $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^{n-m}$.
 - (ii) Define $F : \mathbb{R}^n \to \mathbb{R}^n$ by

$$F\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} f\left(\begin{array}{c} x_1\\ x_2 \end{array}\right)\\ x_2 \end{array}\right).$$

(iii) If dF_p is invertible, then F has a local inverse G:

$$F \circ G(y) = y$$

(iv) Write

$$G\left(\begin{array}{c}y_1\\y_2\end{array}\right) = \left(\begin{array}{c}g_1\left(\begin{array}{c}y_1\\y_2\end{array}\right)\\g_2\left(\begin{array}{c}y_1\\y_1\\y_2\end{array}\right)\end{array}\right).$$

(v) Then $F \circ G(y) = y$ becomes

$$\left(\begin{array}{c} f\left(\begin{array}{c}g_1\left(\begin{array}{c}y_1\\y_2\right)\\g_2\left(\begin{array}{c}y_1\\y_2\end{array}\right)\\g_2\left(\begin{array}{c}y_1\\y_2\end{array}\right)\\g_2\left(\begin{array}{c}y_1\\y_2\end{array}\right)\end{array}\right) = \left(\begin{array}{c}y_1\\y_2\end{array}\right).$$

(vi) In particular,

$$g_2\left(\begin{array}{c}y_1\\y_2\end{array}
ight) = y_2,$$

(vii) and hence

$$f\left(\begin{array}{c}g_1\left(\begin{array}{c}y_1\\y_2\end{array}\right)\\y_2\end{array}\right) = y_1.$$

(viii) Therefore, if we set

$$g(z) = g_1 \begin{pmatrix} q \\ z \end{pmatrix},$$

then

$$f\left(\begin{array}{c}g(z)\\z\end{array}\right) = q.$$

- (ix) That is, g is the desired implict function.
- (x) Note: In practice, one chooses the variables $y_2 \in \mathbb{R}^{n-m}$ to be the ones that are to be the domain variables of the impicit function.
- (c) Implicit Function Theorem:
 - (i) If dF_p invertible, then there exists a neighborhood U of p such that the restriction $f|_U$ has an implicit function.
 - (ii) Alternate version of hypothesis:

(A) Define
$$L_f : \mathbb{R}^m \to \mathbb{R}^m$$
 by

$$L_f(x) = \begin{pmatrix} df_p(x) \\ 0 \end{pmatrix}.$$

(B) Exercise: dF_p invertible $\Leftrightarrow L_f$ invertible.

- (d) Example:
 - (i) Show that there exist functions u = u(x, y) and v = v(x, y) defined in a neighborhood of (1, 1) so that u(1, 1) = v(1, 1) = 1,

$$e^{x^2 - y^2} \cdot u^5 - v^3 = 0,$$

and

$$e^{u^2 - v^2} \cdot x^2 - y^2 = 0$$

(ii) Define $f : \mathbb{R}^4 \to \mathbb{R}^2$ by

$$f\begin{pmatrix} u\\v\\x\\y \end{pmatrix} = \begin{pmatrix} e^{x^2-y^2} \cdot u^5 - v^3\\e^{u^2-v^2} \cdot x^2 - y^2 \end{pmatrix}.$$

- (iii) Note that f(1, 1, 1, 1) = (0, 0).
- (iv) Reinterpretation of problem: Construct implicit function for the (0,0)-level set of f near (u, v, x, y) = (1,1,1,1).
- (v) Define $F : \mathbb{R}^4 \to \mathbb{R}^4$ by

$$F\begin{pmatrix} u\\v\\x\\y \end{pmatrix} = \begin{pmatrix} e^{x^2-y^2} \cdot u^5 - v^3\\e^{u^2-v^2} \cdot x^2 - y^2\\x\\y \end{pmatrix}.$$

(vi) The Jacobian matrix of F at p = (1, 1, 1, 1) is

- (vii) The determinant of this matrix is $-4 \neq 0$ and hence dF_p invertible.
- (e) Example continued: Compute $\frac{\partial u}{\partial y}$ at (x, y) = (1, 1).
 - (i) $\frac{\partial u}{\partial y}(p)$ is the a_{12} entry of the Jacobian of g:

$$\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right).$$

(ii) Differentiating f(g(x, y), x, y) = 1 gives

$$\begin{pmatrix} 5 & -3 & 2 & -2 \\ 2 & -2 & 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(iii) Thus, in particular, we have

$$-2 + 5a_{12} - 3a_{22} = 0$$

$$-2 + 2a_{12} - 2a_{22} = 0.$$

(iv) Solving gives $a_{12} = 1/2$.

1.1. Additional Exercises.

- (1) The function $\frac{1}{32}x^4 + x^2y^2 x^3 y^3 xy^3$ has critical points at (24,0) and (0,0). Determine whether these criticial points are local maximums, local minimums, or neither.
- (2) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map. Show that if $||df_p I||_2 < \frac{1}{2}$ for all $p \in \mathbb{R}^n$, then f is one-to-one, onto, and f^{-1} is also differentiable. Here $|| \cdot ||_2$ denotes the Hilbert-Schmidt norm of a linear transformation: Namely, for each linear transformation $L : \mathbb{R}^n \to \mathbb{R}^n$, define $||L|| = \sum_{i,j} L(e_i)^T \cdot L(e_j)$ where $\{e_i\}$ is the standard basis.
- (3) Consider the following system of equations

$$\begin{aligned} x \cdot e^y &= u, \\ y \cdot e^x &= v. \end{aligned}$$

- (a) Show that there exists an $\epsilon > 0$ such that given any u and v with $|u| < \epsilon$ and $|v| < \epsilon$, the above system has a unique solution $(x, y) \in \mathbb{R}^2$.
- (b) Exhibit a pair $(u, v) \in \mathbb{R}^2$ such that there exist two distinct solutions to this system. Justify your answer.