1. Local consequences of differentiation
(1) Optimization
(a) Let U be a subset of R™.

(b) We say that f: U — R attains a mazimum at p € U iff

f(p) =sup{f(z) | z € U}.

(c) We say that f: U — R attains a minimum at p € U iff
f(p) =nf{f(z) | € U}.

d) Critical points
(d) p
(i) Let U be an open subset of R™.
(i) pis a critical point of f if and only if df,(v) = 0 for all v € R™.

(i) Nota Bene: Since dfy, is linear, need only check that dfy,(e;) =0

where {e;} is a basis. In other words, only need to check that
Jacobian is the 0 matrix.

(iv) Theorem: Let f : U — R be differentiable. If f attains a
maximum or minimum at p, then p is a critical point of f.

(A) Consider g,(t) = g(p+tv), g» : U CR —R.
(B) By assumption g attains maximum at 0.
(C) Thus if t > 0, then
90(t) = 9.(0) _
t—20 -
and hence g/ (0) <0,
(D) and if ¢ < 0, then
9(1) =9.(0) _
t—0 -
and hence g/ (0) > 0.
(E) Thus df,(v) = ¢'(0) = 0.

(e) Problem: How do we determine whether a critical point is a maxi-
mum, a minumum, or neither?

(i) In one dimension: second derivative test or first derivative test.

(ii) In higher dimensions: use second derivative test in every direc-
tion.

(f) Second derivatives and Hessian

(i) Fix a direction v =1>",a;-€;



(ii) We have

9,(t) = dfpite(v)
= Zaidfp+tv(6i)

0
= Zaia—a{(p—&—tv)

(iii) and then
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(iv) The Hessian of f at p is the n x n matrix of second partials:

Hess(f), = {afaij (p)}

(A) From above computation we have

g5 (0) = v - Hess(f), - v.

(B) If the second derivative of f is continuous at p (i.e. sec-
ond partials continuous) then the Hessian is a symmetric
matrix.

(C) Thus, it has n real eigenvalues: A\ < ... < \,. (Spectral
Thm)

(D) By usual proof of spectral theorem A; (resp. A,) is the
smallest (largest) value of v +— vT - Hess(f), - v on unit
sphere.

(E) Among unit vectors v, the function v — ¢//(0) is maxi-
mized at the eigenvector(s) associated to \,.

F) Among unit vectors v, the function v — g¢//(0) is mini-
g o
mized at the eigenvector(s) associated to Aj.
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(g) Second derivative test: Suppose f has second partials defined and
continuous on U and df, = 0. Let Aq,...,\, be the eigenvalues of
the Hessian of f at p.

(i) If Vi, we have A; > 0, then f attains a minimum at p.

(ii) If Vi, we have \; < 0, then
f attains a maximum at p.

(iii) If A; < 0 < \; for some ¢ and j, then p is neither a minimum
or maximum.

(iv) If A; = 0 for some 4 then must find additional informaton e.g.
third derivatives.

(h) Ezercise: Does f(x,y) = 2% + 4wy + 3y? attain a (local) maximum
or minimum at (z,y) = (0,0).

(i) Functions without maxima or minima

(i) Let Ay (p) denote the least/greatest eigenvalue of the Hessian
of f at p.

(ii) Nota Bene: If for each p € U, we have A_(p) < 0 < A:(p),
then f attains neither a maximum or a minimum in U.

(iii) A C? function f : U — R is called harmonic if and only if for
each p € U the sum of the eigenvalues of the Hessian of f at p
equals zero.

(iv) If f harmonic, then A_(p) <0 < Ay (p).

(v) Mazimum Principle: Harmonic functions do not attain max-
ima or minima. (Does not follow immediately from above.)

(2) Local inversion
(a) We will say that f: U — R™ is C locally invertible at p € U iff
(i) 3 open nbhd V of f(p),
(ii) 3¢:V — U such that Vy € V
fle) = v,
and
(iii) ¢ has a continuous first derivative with dgy,) = df, .

(b) Suppose that the derivative of f : U — R™ exists and is continuous
on U C R". If df, is invertible, then f is locally invertible at p.

(i) Proof: Given y, want to show that we have a unique solution
z to f(x) =y. Then set g(y) equal to this solution.

(ii) Solving f(x) = y is equivalent to finding a fixed point of the
mapping F' defined by

F(r) = z+y— f(x).



(iii) Want to show F' is contraction mapping.

(iv) Reduction to origin: By precomposing with  — x+p and post-
composing with z — df, ' (f(z) — f(p)) can assume p = f(p) =
0 and df, is the identity linear transformation. (Alternatively,
could use F(z) =z + y—df, "o f(x)).

(v) We have
|F(a) = F(b)| < M - |a —b|

where M is sup{||dF,||} over z in the line segment joining a
and b.

(vi) We have dF, = I —df,, thus, since x — df, is continuous with
dfo = I, there exists 7 > 0 so that |z| < r = ||dF;|| < 3.

(vii) Thus,
1
[Fla) ~ F(5)| < 5 -la ]
and F' is a contraction mapping.
(viii) Exercise: Show that F' maps {z | |z| < r} into {z | |z| < r}.

(ix) Exercise: Show that g has a continuous first derivative near

f(p)=0.

(3) Local section
(a) Implicit functions
(i) Suppose m <mn and U C R™.
(ii) Given f:U — R™, the g-level set of f is the set

“({g}) = {zeR"| f(a) =g}

(iii) Wish to realize f~1({q}) as the graph of a function g. A suit-
able function g is called an ‘implicit function’ because it is only
implicitly defined.

(iv) Definition: Let p € f~1({¢}) and let V be an open set in R"~™.
We say that g : V — R” is a C' implicit function for f near p
iff

(A) peg(V),
(B) g is injective,
)

(€
(D) f(g(z),z) =qforall ze V.
(v) Example:

g has a continuous derivative, and

(A) f(z1,22) = 27 + 23
(B) Let ¢ = 1. The point (1,0) belongs to the 1-level set of f.
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(C) Let V = (—1,1). Then g : V — R? defined by
9(y) = (V1+y%y)
is an implicit function for f.
(b) Constructing implicit function using inverse function theorem:

(i) R® = R™ x R™"™™: Each vector & € R™ can be written as
(z1,22) with 1 € R™ and a9 € R*™"™.

(i) Define F : R® — R" by
x1
r(n)- (702
2 Zo

(iii) If dF, is invertible, then F" has a local inverse G:

FoG(y) =y.
(iv) Write
Al
G< Y1 ) _ gt Y2
Y2 n
92 Yo

(v) Then F o G(y) = y becomes

7 Y1

Y2
! 92 u = .
Y2 Y2
1
g2 < Yo >
(vi) In particular,

1 _
92 ( Yo > Y2,
(vii) and hence

Y1
f gl(yz> = .

Y2

(viii) Therefore, if we set

then



(ix) That is, g is the desired implict function.

(x) Note: In practice, one chooses the variables y2 € R"™™ to be
the ones that are to be the domain variables of the impicit
function.

(¢) Implicit Function Theorem:

(i) If dF), invertible, then there exists a neighborhood U of p such
that the restriction f|y has an implicit function.

(ii) Alternate version of hypothesis:

(A) Define Ly : R™ — R™ by

L) = ().

(B) Exercise: dF), invertible < L; invertible.
(d) Example:

(i) Show that there exist functions v = wu(z,y) and v = v(z,y)
) =

defined in a neighborhood of (1,1) so that u(1,1) = v(1,1) =1,
TV d B = 0,
and
2 2
U v '1'2_y2 =0

2_ .2
B et Y .u5_,03
= 2 9 .
ey v .$2_y2

(iii) Note that f(1,1,1,1) = (0,0).

e 8 <

(iv) Reinterpretation of problem: Construct implicit function for
the (0, 0)-level set of f near (u,v,z,y) = (1,1,1,1).

(v) Define F : R* — R* by

6$27y2 5 3

u Ut — v
2_ 2
v u = 2,2
F _ e x Yy
€ x
Yy y

(vi) The Jacobian matrix of F' at p = (1,1,1,1) is

) ) )

5 =3 2 =2
2 -2 2 =2
0 0 1 0

0 0 0 1
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(vii) The determinant of this matrix is —4 # 0 and hence dF} in-
vertible.

(e) Example continued: Compute g—; at (z,y) = (1,1).

(i) 24(p) is the a1z entry of the Jacobian of g:

dy
aix a2
a21 A22

a1 ai2
5 =3 2 =2 az1 Q22 o 0 0
<2—22—2>’ 1 0 (00)'
0 1

(iii) Thus, in particular, we have
-2 + 5a12 — 3a22 = 0
-2 + 2CL12 — 2(122 =

e

(iv) Solving gives a2 = 1/2.

1.1. Additional Exercises.

(1) The function 3%334 +2%y? — 2% —y3 — 29> has critical points at (24,0) and
(0,0). Determine whether these criticial points are local maximums, local

minimums, or neither.

(2) Let f: R® — R" be a differentiable map. Show that if ||df, — I||> < %
for all p € R", then f is one-to-one, onto, and f~! is also differen-
tiable. Here || - ||2 denotes the Hilbert-Schmidt norm of a linear trans-

formation: Namely, for each linear transformation L : R™ — R™, define
L] =>4 L(e;)" - L(e;) where {e;} is the standard basis.

(3) Consider the following system of equations
x-e¥ =u,
y-e¥ =w.
(a) Show that there exists an € > 0 such that given any v and v with

|u| < € and |v| < €, the above system has a unique solution (x,y) €
R2.

(b) Exhibit a pair (u,v) € R? such that there exist two distinct solutions
to this system. Justify your answer.



