1. Compactness and consequences

(1) Subsequences

- (a) Nota Bene: If $\lim_{n\to} \text{dist}(x_{n+1}-x_n) = 0$, then x_n does not necessarily converge.
- (b) E.g. consider partial sums of harmonic series: $x_n = \sum_{k=1}^n 1/k$.
- (c) If in addition, x_n is bounded, then x_n does not necessarily converge.
- (d) *Exercise:* Show that one can choose sequence $\epsilon_k \in \{-1, 1\}$ so that

$$\limsup_{n \to \infty} \sum_{k=1}^{n} \epsilon_k \cdot \frac{1}{k} = 1$$

but

$$\liminf_{n \to \infty} \sum_{k=1}^{n} \epsilon_k \cdot \frac{1}{k} = -1.$$

- (e) But a bounded sequence of reals always has a convergent subsequence.
 - (i) Recall the tail $A_k = \{x_n \mid n \ge k\}$.
 - (ii) For each k can find x_{n_k} so that $|x_{n_k} \sup(A_k)| < \frac{1}{k}$.
 - (iii) Show that x_{n_k} converges to $\limsup_{n\to\infty} x_n$.
- (2) Sequential compactness
 - (a) A is called *compact* iff every sequence has a convergent subsequence.
 - (b) \mathbb{R} is not compact. Let $x_n = n$. No convergent subsequence.
 - (c) In \mathbb{R}^n : compact \Leftrightarrow closed and bounded. (Heine-Borel)
 - (d) \Rightarrow If $\{x_n\} \subset \mathbb{R}^n$ is bounded, then it has a subsequences that converges.
 - (e) For general metric spaces, closed and bounded is not enough.
 - (i) *Exercise:* Show that $\mathbb{Q} \cap [0,1]$ is closed and bounded in \mathbb{Q} (with Archimedean norm), and show $\mathbb{Q} \cap [0,1]$ is not compact.
 - (ii) Define $d: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by

$$d(m,n) = \begin{cases} 1 & \text{if } m \neq n \\ 0 & \text{if } m = n \end{cases}$$

- (A) *Exercise:* Show that d is a distance function.
- (B) Note that (\mathbb{N}, d) is closed and bounded.
- (C) But (\mathbb{N}, d) is not a compact metric space.
- (iii) Little ℓ^2 :
 - (A) Define ℓ^2 to be the set of sequences x_k such that the partial sums $\sum_{k=1}^{n} |x_k|^2$ converge.
 - (B) Distance on ℓ^2 : $d(x_k, y_k) = \sum k = 1^{\infty} |x_k y_k|^2$. (Why is this a well-defined distance function?)

- (C) The unit ball centered at zero, $B = \{x_k \mid |x_k| = 1\}$, is closed and bounded.
- (D) For each n, define sequence $e_n = \{0, 0, 0, \dots, 0, 0, 1, 0, 0 \dots\}$ where the '1' appears in the n^{th} position.
- (E) We have $\{e_n\} \subset B$, but e_n does not have a subsquence.
- (F) Hence B is not compact.
- (3) Lipschitz functions.
 - (a) A function $f: X \to Y$ is called K-Lipschitz iff

$$\operatorname{dist}(f(x), f(y)) \leq K \cdot \operatorname{dist}(x, y).$$

- (b) *Exercise:* Any *K*-Lipschitz function is continuous.
- (c) *Exercise:* If $f : [a, b] \to \mathbb{R}$ is differentiable with $|f'(x)| \le K$, then f is K-Lipschitz.
- (d) Theorem: Suppose that X and Y are compact. Fix K. The set of all K-Lipschitz functions is a compact subset of C(X, Y).
 - (i) Let $\{f_n\}$ be a sequence of K-Lipschitz functions.
 - (ii) How to produce a subsequence that converges:
 - (A) Since X is compact, X contains a countable dense subset C. (See exercises under 'total boundedness' below).
 - (B) $\Rightarrow \exists$ sequence x_m such that for each $\forall \epsilon > 0$ and $\forall x \in X$, $\exists m \text{ so that } \operatorname{dist}(x, x_m) < \epsilon$.
 - (C) Since Y compact, $\{f_n(x_1)\}$ has a convergent subsequence. Let f_n^1 denote the associated subsequence of functions.
 - (D) Since Y compact, $\{f_n^1(x_1)\}$ has a convergent subsequence. Call this subsequence Let f_n^2 denote the associate subsequence of functions.
 - (E) Since Y compact, $\{f_n^2(x_1)\}$ has a convergent subsequence. Let f_n^3 denote the associated subsequence of functions.
 - (F) repeat ad infinitum
 - (G) Diagonalize: For each *i*, the sequence $f_j^j(x_i)$ converges (why?) and hence is Cauchy.
 - (iii) Claim: for each $x \in X$, the sequence $\{f_i^j(x)\}$ is Cauchy.
 - (A) Let $\epsilon > 0$.
 - (B) Choose m so that $|x_m x| < \epsilon/(3K)$
 - (C) Choose M so that $i, j > M \Rightarrow |f_i^i(x_m) f_j^j(x_m)| < \epsilon/3.$

(D) Estimate: Using triangle inequality and K-Lipschitz

$$\begin{aligned} |f_i^i(x) - f_j^j(x)| &\leq |f_i^i(x) - f_i^i(x_m)| + |f_i^i(x_m) - f_j^j(x_m)| + |f_j^j(x_m) - f_j^j(x)| \\ &\leq K \cdot |x - x_m| + |f_i^i(x_m) - f_j^j(x_m)| + K \cdot |x_m - x| \\ &\leq \epsilon. \end{aligned}$$

- (iv) Let f(x) be the limit of $\{f_i^j(x)\}$
- (v) Since $|f_j^j(x) f_j^j(y)| \le K|x-y|$ we have $|f(x) f(y)| \le K|x-y|$. So f is Lipschitz and hence continuous.
- (4) Compactness via covers
 - (a) (X, dist) metric space
 - (b) The (open) ball of radius r centered at x is the set

$$\{ y \in X \mid \operatorname{dist}(x, y) < r \}.$$

Notation: B(x, r).

- (c) Let $A \subset B$. A covering of A is a collection of balls in X whose union contains A.
- (d) A set A is *compact* iff given any covering of A, we can remove all but finitely many of the balls, and still cover A. ('finite subcover')
- (5) Relation between compactness and completeness
 - (a) Compactness \Rightarrow completeness
 - (i) Let x_n be a Cauchy sequence.
 - (ii) Compactness \Rightarrow a convergent subsequence has limit.
 - (iii) *Exercise:* Show that x_n converges to this limit.
 - (iv) Converse is not true: \mathbb{R} is complete but not compact.
 - (b) Total boundedness
 - (i) Special cover: The ϵ -cover of A consists of all balls $B(x, \epsilon)$, with $x \in A$.
 - (ii) A is totally bounded iff $\forall \epsilon > 0$, the ϵ -cover of A has a finite subcover.
 - (iii) *Exercise:* Any bounded subset of \mathbb{R}^n is totally bounded.
 - (iv) *Exercise:* If A is compact, then A is totally bounded.
 - (v) *Exercise:* If A is totally bounded, then there exists a countable subset $C \subset A$ that is dense in A. (We say that C is *dense* in A, if for every $\epsilon > 0$ the union of all balls $B(c, \epsilon)$ where $c \in C$ contains A.)
 - (c) *Theorem:* X is compact if and only if X is both complete and totally bounded.
- (6) Arzela-Ascoli theorem (one variation)

(a) $F \subset C(X, Y)$ is called *equicontinuous* iff $\forall \epsilon > 0$ and $\forall x \in X$, there exists $\delta_{x,\epsilon}$ such that $\forall f \in F$, we have

 $\operatorname{dist}(x, x') < \delta_{x,\epsilon} \Rightarrow \operatorname{dist}(f(x), f(x')).$

- (b) *Exercise:* Fix K, and let X and Y be compact metric spaces. Show that the set of K-Lipschitz functions in C(X, Y) is equicontinuous.
- (c) *Exercise:* Define $f_n : [0,1] \to [0,1]$ by $f_n(x) = x^n$. Show that $\{f_n\}$ is not equicontinuous.
- (d) Theorem: Let X and Y be compact. If $F \subset C(X, Y)$ is equicontinuous, then F is totally bounded.
- (e) Corollary: (Arzela-Ascoli) Let X be compact, and suppose that $\{f_n\}$ is a sequence that belongs an equicontinuous subset of $C(X, \mathbb{R})$. If there exists M such that $|f_n(x)| \leq M$ for all n and x, then f_n has a convergent subsequence.
- (7) Application: Euler's approximation method apres Peano
 - (a) Want to solve y'(t) = F(t, y(t)) with y(0) = 0 and F continuous (but not necessarily Lipschitz in second variable).
 - (b) Euler approximation

4

- (i) An 'Euler approximant' is a continuous piecewise linear function that results from the following process
- (ii) Pick $t_1 > 0$. (Here we set $t_0 = 0$.)
- (iii) Define y on $[t_0, t_1]$ to be the linear function with $y(t_0) = 0$ and slope equal to $F(t_0, y(t_0))$.
- (iv) Pick $t_2 > t_1 = 0$
- (v) We extend y to the unique continuous function on $[0, t_2]$ that is linear on $[t_1, t_2]$ slope equal to $F(t_1, y(t_1))$.
- (vi) Repeat (i.e. pick $t_3 > t_2$ etc.)
- (vii) y is the Euler approximant associated to the sequence $0 = t_0 < t_1 < t_2 < t_3 \cdots$.
- (viii) Idea: The approximation becomes better if the $\sup\{|t_{i+1} t_i|\}$ becomes smaller.
- (c) Equicontinuity of the set of Euler approximations.
 - (i) $M = \sup\{|F(t,y)| \mid (t,y) \in [0,1] \times [-1,1]\}$
 - (ii) The restriction of each Euler approximations to [0, 1/M] is *M*-Lipschitz.
 - (A) If $t_i < s \le t < t_{i+1}$, then

$$|y(s) - y(t)| \leq M|s - t|.$$

(B) If
$$s \le t_i < \dots < t_j \le t$$
, then
 $|y(s) - y(t)| \le |y(t_i) - y(s)| + \sum_{k=i}^j |y(t_{k+1}) - y(t_k)| + |y(t) - y(t_j)|$
 $\le M \left(|t_i - s| + \sum_{k=i}^j |t_{k+1} - t_k| + |t - t_j| \right)$
 $\le M|s - t|.$

- (d) Now apply Arzela-Ascoli to get convergent subsequence.
- (e) Separate argument shows that limit is a solution to ODE.
- (f) Solution is not necessarily unique; different subsequences.

2. Additional exercises

- (1) Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of differentiable functions such that for each $x \in [0,1]$,
 - (a) $f_n(x)$ converges to 0 (ptwise convergence)
 - (b) and $|f'_n(x)| \le 1$.

Then f converges to the 0 function in $C([0,1],\mathbb{R})$. (uniform convergence)

(2) Let G(x, y) be a continuous function on \mathbb{R}^2 and suppose for each positive integer k, that g_k is a continuous function defined on [0, 1] with the property that $|g_k(y)| < 1$ for all $y \in [0, 1]$. Now define

$$f_k(x) := \int_0^1 g_k(y) \cdot G(x, y) dy.$$

Prove that the sequence $\{f_k\}$ is equicontinuous on [0, 1].

(3) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $x \in \mathbb{R}$ and define the sequence $\{x_n\}_{n=0}^{\infty}$ inductively by setting $x_0 = x$ and $x_{n+1} = f(x_n)$. Suppose that $\{x_n\}$ is bounded. Prove that there exists $y \in \mathbb{R}$ such that f(y) = y. (Suggestion: Consider function f(x)-x and use intermediate value theorem and monotone convergence theorem.)