
1. compactness and consequences

(1) Subsequences

(a) Nota Bene: If limn→ dist(xn+1−xn) = 0, then xn does not necessarily
converge.

(b) E.g. consider partial sums of harmonic series: xn =
∑n
k=1 1/k.

(c) If in addition, xn is bounded, then xn does not necessarily converge.

(d) Exercise: Show that one can choose sequence εk ∈ {−1, 1} so that

lim sup
n→∞

n∑
k=1

εk ·
1
k

= 1

but

lim inf
n→∞

n∑
k=1

εk ·
1
k

= −1.

(e) But a bounded sequence of reals always has a convergent subsequence.

(i) Recall the tail Ak = {xn | n ≥ k}.

(ii) For each k can find xnk
so that |xnk

− sup(Ak)| < 1
k .

(iii) Show that xnk
converges to lim supn→∞ xn.

(2) Sequential compactness

(a) A is called compact iff every sequence has a convergent subsequence.

(b) R is not compact. Let xn = n. No convergent subsequence.

(c) In Rn: compact ⇔ closed and bounded. (Heine-Borel)

(d) ⇒ If {xn} ⊂ Rn is bounded, then it has a subsequences that converges.

(e) For general metric spaces, closed and bounded is not enough.

(i) Exercise: Show that Q∩ [0, 1] is closed and bounded in Q (with
Archimedean norm), and show Q ∩ [0, 1] is not compact.

(ii) Define d : N× N→ R by

d(m,n) =
{

1 if m 6= n
0 if m = n

(A) Exercise: Show that d is a distance function.

(B) Note that (N, d) is closed and bounded.

(C) But (N, d) is not a compact metric space.

(iii) Little `2:

(A) Define `2 to be the set of sequences xk such that the partial
sums

∑n
k=1 |xk|2 converge.

(B) Distance on `2: d(xk, yk) =
∑
k = 1∞|xk − yk|2. (Why is

this a well-defined distance function?)
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(C) The unit ball centered at zero, B = {xk | |xk| = 1}, is
closed and bounded.

(D) For each n, define sequence en = {0, 0, 0, . . . , 0, 0, 1, 0, 0 . . .}
where the ‘1’ appears in the nth position.

(E) We have {en} ⊂ B, but en does not have a subsquence.

(F) Hence B is not compact.

(3) Lipschitz functions.

(a) A function f : X → Y is called K-Lipschitz iff

dist(f(x), f(y)) ≤ K · dist(x, y).

(b) Exercise: Any K-Lipschitz function is continuous.

(c) Exercise: If f : [a, b]→ R is differentiable with |f ′(x)| ≤ K, then f is
K-Lipschitz.

(d) Theorem: Suppose that X and Y are compact. Fix K. The set of all
K-Lipschitz functions is a compact subset of C(X,Y ).

(i) Let {fn} be a sequence of K-Lipschitz functions.

(ii) How to produce a subsequence that converges:

(A) Since X is compact, X contains a countable dense subset
C. (See exercises under ‘total boundedness’ below).

(B) ⇒ ∃ sequence xm such that for each ∀ε > 0 and ∀x ∈ X,
∃m so that dist(x, xm) < ε.

(C) Since Y compact, {fn(x1)} has a convergent subsequence.
Let f1

n denote the associated subsequence of functions.

(D) Since Y compact, {f1
n(x1)} has a convergent subsequence.

Call this subsequence Let f2
n denote the associate subse-

quence of functions.

(E) Since Y compact, {f2
n(x1)} has a convergent subsequence.

Let f3
n denote the associated subsequence of functions.

(F) repeat ad infinitum

(G) Diagonalize: For each i, the sequence f jj (xi) converges (why?)
and hence is Cauchy.

(iii) Claim: for each x ∈ X, the sequence {f jj (x)} is Cauchy.

(A) Let ε > 0.

(B) Choose m so that |xm − x| < ε/(3K)

(C) Choose M so that i, j > M ⇒ |f ii (xm)− f jj (xm)| < ε/3.
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(D) Estimate: Using triangle inequality and K-Lipschitz

|f ii (x)− f jj (x)| ≤ |f ii (x)− f ii (xm)| + |f ii (xm)− f jj (xm)| + |f jj (xm)− f jj (x)|

≤ K · |x− xm| + |f ii (xm)− f jj (xm)| + K · |xm − x|
≤ ε.

(iv) Let f(x) be the limit of {f jj (x)}

(v) Since |f jj (x)−f jj (y)| ≤ K|x−y| we have |f(x)−f(y)| ≤ K|x−y|.
So f is Lipschitz and hence continuous.

(4) Compactness via covers

(a) (X,dist) metric space

(b) The (open) ball of radius r centered at x is the set

{y ∈ X | dist(x, y) < r}.

Notation: B(x, r).

(c) Let A ⊂ B. A covering of A is a collection of balls in X whose union
contains A.

(d) A set A is compact iff given any covering of A, we can remove all but
finitely many of the balls, and still cover A. (‘finite subcover’)

(5) Relation between compactness and completeness

(a) Compactness ⇒ completeness

(i) Let xn be a Cauchy sequence.

(ii) Compactness ⇒ a convergent subsequence has limit.

(iii) Exercise: Show that xn converges to this limit.

(iv) Converse is not true: R is complete but not compact.

(b) Total boundedness

(i) Special cover: The ε-cover of A consists of all balls B(x, ε), with
x ∈ A.

(ii) A is totally bounded iff ∀ε > 0, the ε-cover of A has a finite
subcover.

(iii) Exercise: Any bounded subset of Rn is totally bounded.

(iv) Exercise: If A is compact, then A is totally bounded.

(v) Exercise: If A is totally bounded, then there exists a countable
subset C ⊂ A that is dense in A. (We say that C is dense in
A, if for every ε > 0 the union of all balls B(c, ε) where c ∈ C
contains A.)

(c) Theorem: X is compact if and only if X is both complete and totally
bounded.

(6) Arzela-Ascoli theorem (one variation)
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(a) F ⊂ C(X,Y ) is called equicontinuous iff ∀ε > 0 and ∀x ∈ X,
there exists δx,ε such that ∀f ∈ F , we have

dist(x, x′) < δx,ε ⇒ dist(f(x), f(x′)).

(b) Exercise: Fix K, and let X and Y be compact metric spaces. Show
that the set of K-Lipschitz functions in C(X,Y ) is equicontinuous.

(c) Exercise: Define fn : [0, 1] → [0, 1] by fn(x) = xn. Show that {fn} is
not equicontinuous.

(d) Theorem: Let X and Y be compact. If F ⊂ C(X,Y ) is equicontinuous,
then F is totally bounded.

(e) Corollary: (Arzela-Ascoli) Let X be compact, and suppose that {fn}
is a sequence that belongs an equicontinuous subset of C(X,R). If
there exists M such that |fn(x)| ≤ M for all n and x, then fn has a
convergent subsequence.

(7) Application: Euler’s approximation method apres Peano

(a) Want to solve y′(t) = F (t, y(t)) with y(0) = 0 and F continuous (but
not necessarily Lipschitz in second variable).

(b) Euler approximation

(i) An ‘Euler approximant’ is a continuous piecewise linear function
that results from the following process

(ii) Pick t1 > 0. (Here we set t0 = 0.)

(iii) Define y on [t0, t1] to be the linear function with y(t0) = 0 and
slope equal to F (t0, y(t0)).

(iv) Pick t2 > t1 = 0

(v) We extend y to the unique continuous function on [0, t2] that is
linear on [t1, t2] slope equal to F (t1, y(t1)).

(vi) Repeat (i.e. pick t3 > t2 etc.)

(vii) y is the Euler approximant associated to the sequence 0 = t0 <
t1 < t2 < t3 · · · .

(viii) Idea: The approximation becomes better if the sup{|ti+1 − ti|}
becomes smaller.

(c) Equicontinuity of the set of Euler approximations.

(i) M = sup{|F (t, y)| | (t, y) ∈ [0, 1]× [−1, 1]}

(ii) The restriction of each Euler approximations to [0, 1/M ] is M -
Lipschitz.

(A) If ti < s ≤ t < ti+1, then

|y(s)− y(t)| ≤ M |s− t|.
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(B) If s ≤ ti < · · · < tj ≤ t, then

|y(s)− y(t)| ≤ |y(ti)− y(s)|+
j∑
k=i

|y(tk+1)− y(tk)|+ |y(t)− y(tj)|

≤ M

(
|ti − s|+

j∑
k=i

|tk+1 − tk|+ |t− tj |

)
≤ M |s− t|.

(d) Now apply Arzela-Ascoli to get convergent subsequence.

(e) Separate argument shows that limit is a solution to ODE.

(f) Solution is not necessarily unique; different subsequences.

2. additional exercises

(1) Let fn : [0, 1] → R be a sequence of differentiable functions such that for
each x ∈ [0, 1],

(a) fn(x) converges to 0 (ptwise convergence)

(b) and |f ′n(x)| ≤ 1.

Then f converges to the 0 function in C([0, 1],R). (uniform convergence)

(2) Let G(x, y) be a continuous function on R2 and suppose for each positive
integer k, that gk is a continuous function defined on [0, 1] with the property
that |gk(y)| < 1 for all y ∈ [0, 1]. Now define

fk(x) :=
∫ 1

0

gk(y) ·G(x, y)dy.

Prove that the sequence {fk} is equicontinuous on [0, 1].

(3) Let f : R→ R be a continuous function. Let x ∈ R and define the sequence
{xn}∞n=0 inductively by setting x0 = x and xn+1 = f(xn). Suppose that
{xn} is bounded. Prove that there exists y ∈ R such that f(y) = y.
(Suggestion: Consider function f(x)−x and use intermediate value theorem
and monotone convergence theorem.)


