
1. contractions and completeness

(1) Newton’s method:

(a) Want to solve g(x) = 0.

(b) Make initial guess x0.

(c) Tangent line approximation: y − g(x0) = g′(x0)(x− x0).

(d) Set y = 0 and solve for x to obtain ‘better guess’:

x1 = x0 −
g(x0)
g′(x0)

.

(e) In general, set f(x) = x− g(x)
g′(x) , and xn+1 = f(xn).

(f) If g(x) = x2 − 2, then we get the Babylonian sequence.

(g) Do we always get convergence?

(2) Differential equations

(a) Major focus of last 100 years

(b) Iteration methods (Picard, Nash, Moser)

(3) Picard iteration

(a) Consider ODE y′(t) = F (t, y(t)).

(b) Equivalent to: y(t) = y(0) +
∫ t

0
F (s, y(s)) ds. (Fun thm of calculus)

(c) Solution y is a fixed point of a mapping φ.

(i) Namley, define φ by

(φ(y))(t) = y(0) +
∫ t

0

F (s, y(s)) ds.

(ii) Note that φ well-defined if y and F are continuous.

(iii) Then y is a solution to (b) if and only if φ(y) = y.

(d) Iterate to find fixed point:

(i) Make initial guess y0.

(ii) Set yn+1 = φ(yn)

(4) Does yn converge to fixed point of φ?

(a) Idea: limit is fixed point.

(b) Assume that ∃ K so that |F (s, y)−F (s, y′)| ≤ K ·|y−y′|. (Lipschitz).

(c) The estimate:

|yn+1(t)− yn(t)| ≤
∫ t

0

|F (s, yn(s))− F (s, yn−1(s))| ds

≤ K · |t− 0| sup
s∈[0,t]

|yn(s)− yn−1(s)|.
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(d) Let T = 1/(2K) and define |f | = sup{f(t) | t ∈ [0, T ]}.

(e) Then the estimate can then be interpreted as

|yn+1 − yn| ≤
1
2
· |yn − yn−1|.

(f) Analogy with Babylonan sequence leads one to believe that this se-
quence is ‘Cauchy’.

(g) But

(i) how does one define ‘Cauchy’ in this context?

(ii) do such ‘Cauchy’ sequences converge?

(iii) and if so, is the limit a continuous function?

(5) Cauchy sequences in metric spaces

(a) A metric or distance function on X is a function d : X×X → R+∪{0}
that satisfies

(i) d(x, y) = d(y, x)

(ii) d(x, z) ≤ d(x, y) + d(y, z)

(iii) d(x, y) = 0 iff x = y

(b) Cauchy sequences and completeness

(i) The sequence xn is said to be Cauchy with respect to the metric
d iff ∀m, ∃M so that i, j > M ⇒ d(xi, xj) < 1/m.

(ii) The metric space (X, d) is complete iff every Cauchy sequence
converges.

(c) Contraction mapping principle

(i) Theorem: If X is a complete metric space, and φ : X → X
satisfies

d(φ(x), φ(x′)) ≤ 1
2
· d(x, x′)

for all x ∈ X, then φ has fixed point.

(ii) Can replace 1/2 with any constant strictly less than 1.

(d) Example: continuous functions with ‘sup norm’

(i) Let C([a, b],R) denote the set of all continuous functions f :
[a, b]→ R.

(ii) For each f, g ∈ C([a, b],R), define the distance between f and g
to be

d(f, g) = sup{|f(t)− g(t)| | t ∈ [a, b]}.

(iii) This is called the sup norm or (L∞ norm) distance.

(iv) Terminology: If limn→∞ dist(fn, f) = 0, we say that fn con-
verges uniformly.
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(6) Theorem: C([a, b],R) is complete with respect to the sup norm distance.

(a) Let fn be a sequence in C([a, b],R) that is Cauchy with respect to sup
norm.

(b) In other words, for all ε > 0, ∃M so that if m,n > M then

sup{|fn(t)− fm(t) | t ∈ [a, b]} < ε.

(c) Existence of a limit:

(i) Fix x.

(ii) Note that {fn(x)} ⊂ R is Cauchy with respect to the usual
distance on R.

(iii) Since R is complete, {fn(x)} has a limit.

(iv) Define f(x) to be this limit.

(v) f is called the pointwise limit of the sequence fn.

(d) Convergence with respect to sup norm:

(i) Let ε > 0.

(ii) Choose M so that i, j > M ⇒ supx |fi(t)− fj(t)| < ε.

(iii) Fix j > M .

(iv) For all i > M and all t ∈ [a, b] we have |fi(t)− fj(t)| < ε.

(v) Note that for each given y, the function g(x) = |x − y| is a
continuous function

(vi) Hence, for each t ∈ [a, b]

|f(t)− fj(t)| = lim
i→∞

|fi(t)− fj(t)| ≤ ε/3

(vii) In other words, for each j > M , we have d(f, fj) < ε.

(viii) Thus, fj converges to f with respect to sup norm.

(e) The limit is continuous:

(i) Fix x ∈ [a, b] and ε > 0.

(ii) Since d(fj , f)→ 0, we can choose j so that if t ∈ [a, b], then

|fj(t)− f(t)| < ε/3.

(iii) Fix this j.

(iv) Since fj continuous, ∃ δ > 0 so that if |x− y| < δ, then

|fj(x)− fj(y)| < ε/3.
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(v) Triangle inequality ⇒ ∀y such that |x− y| < δ we have

|f(x)− f(y)| ≤ |f(x)− fj(x) + fj(x) − fj(y) + fj(y) − f(y)|
≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|

≤ ε

3
+

ε

3
+

ε

3
.

(vi) Thus, f is continuous.

(f) More general situation:

(i) Let X be a compact topological space and let (Y, dY ) be a metric
space.

(ii) Let C(X,Y ) be the continuous functions from X to Y .

(iii) Define d : C(X,Y )× C(X,Y )→ R by

d(f, g) = sup {dY (f(x), g(x)) | x ∈ X}.

(iv) Since X compact, d is well-defined.

(v) If, for example, X = R, then f(x) = x does not have finite
distance from g(x) = 0.

(vi) Exercise: Show that d is a distance function.

(vii) Theorem: If Y is complete, then C(X,Y ) is complete.

(viii) The proof is the same!

(7) Closedness and Completeness.

(a) Let (X, d) be a metric space, and let A ⊂ X. A point x ∈ X is called
a limit point of A ⇐⇒ there exists a sequence {an} ⊂ A so that
lim an = x.

(b) A subset A ⊂ X is called closed ⇐⇒ all of the limit points of A are
contained in A.

(c) Exercise: Show that a closed subset A of a complete metric space X
is complete, i.e. if {an} ⊂ A is Cauchy then an has a limit.

(d) Application: Babylonian sequence converges

(i) [1,∞) is complete

(ii) g(x) = x/2 + 1/x maps [1,∞) into [1,∞)

(iii) Thus, since g is a contraction, g has a fixed pt in [1,∞).

1.1. additional exercises.

(1) The astronomer Halley proposed the following iterative scheme for solving
f(x) = 0.

xn+1 = xn −
2f(xn)f ′(xn)

2f ′(x)2 − f(xn)f ′′(xn)
.

Does Halley’s method converge?
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(2) Let I be a closed interval in R, and let f be a differentiable real valued
function on I, with f(I) ⊂ I. Suppose that |f ′(t)| < 3/4 for all t ∈ I. Let
x0 be any point in I and define a sequence xn by xn+1 = f(xn) for every
n > 0. Show that there exists x ∈ I with f(x) = x and limxn = x.

(3) Define Φ : C([a, b])→ C([a, b]) by

[Φ(f)](t) = 1 +
∫ t

0

s2e−f(s) ds.

Define f0 ≡ 1 and fn+1 = Φ(fn).

(a) Prove that 1 ≤ fn(t) ≤ 1 + 1/3

(b) Prove that

|fn+1(x)− fn(x)| < 1
3

sup{|fn(t)− fn−1(t)| | 0 ≤ t ≤ 1}

(c) Show that fn converges to f in C([a, b]).


