
1. Mappings that are almost linear

(1) Differentiability in 1-dimension.

(a) f : R→ R is said to be differentiable at x ∈ R iff

lim
h→0

f(x+ h)− f(x)
h

.

exists.

(b) The limit (if it exists) is called the derivative of f at x and is
denoted by f ′(x).

(c) Exercise: Show that f differentiable at x ⇒ f continuous at x.
(Similar to proof that K-Lipschitz implies continuous.)

(d) Nota Bene: differentiability does not imply K-Lipschitz.
E.g. f : R→ R defined by f(x) = ex is not K-Lipschitz for any K.

(e) Example: ∃ a function that is continuous everywhere but differentiable
nowhere.

(i) Idea: Construct a sequence of piecewise linear functions fn using
inductive procedure, and then take limit. (Bolzano)

(ii) Define f1 by f1(x) = x.

(iii) Suppose that fn has been constructed.

(iv) Let [a, b] be a (maximal) interval of increase (or decrease) of fn.

(v) Divide [a, b] into 3 subintervals [a, a′], [a′, b′] and [b′, b] of equal
length.

(vi) fn+1 is uniquely defined by the following conditions:

(A) The restriction of fn+1 to each of the three subintervals is
linear.

(B) fn+1(a) = fn(a)

(C) fn+1(b) = fn(b)

(D) fn+1(a′) = fn(a) + 3
4 (fn(b)− fn(a))

(E) fn+1(b′) = fn(b)− 3
4 (fn(b)− fn(a))

(vii) Continuity everywhere:

(A) Exercise: Show that fn is Cauchy in C0([0, 1],R).

(B) Thus since C0([0, 1],R), fn has continuous limit f .

(viii) Differentiability nowhere:

(A) Need exercise: If f is differentiable at x, an ↗ x, and
bn ↘ x, then

lim
n→∞

f(an)− f(bn)
an − bn

= f ′(x).
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(B) Note that if n ≥ m and all k we have f( k
3m ) = fn( k

3m ).

(C) Use this to show that∣∣∣∣∣f(k+1
3m )− f( k

3m )
k+1
3m − k

3m

∣∣∣∣∣ ≥ (3/2)m.

(D) Use exercise to conclude that f is not differentiable at every
x.

(2) Mean value theorem (MVT)

(a) Theorem: Let f : [a, b] be differentiable on (a, b) and continuous on
[a, b], then ∃c ∈ (a, b) so that

f(b)− f(a) = f ′(c) · (b− a).

(b) Often the MVT can be used to get slightly better than expected.

(c) Application: IVT for derivative

(i) Suppose f : R → R differentiable and we know that f ′(a) >
m > f ′(b).

(ii) What else do we need to know about f in order to guarantee
that ∃c ∈ (a, b) so that f ′(c) = m?

(iii) Answer: Nothing more!

(A) Definition of f ′(a) and f ′(b) implies ∃ h > 0 so that
f(a+ h)− f(a)

h
< y <

f(b)− f(b− h)
h

.

(B) Fix h.

(C) Note that

g(t) =
f(t+ h)− f(t)

h

is defined and continuous on [a, b− h].

(D) By IVT, ∃ c ∈ (a, b− h) so that g(c) = m.

(E) In other words:
f(c+ h)− f(c)

h
= m.

(F) On the other hand, MVT gives d ∈ (c, c+ h) so that

f(c+ h)− f(c) = f ′(d) · h.

(G) Thus, f ′(d) = m.
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(3) Definition of derivative in higher dimensions.

(a) If n = 1 and m is arbitrary, then the same formula works since h is
scalar.

(b) But if n larger, then it doesn’t make sense to divide vectors.

(c) The directional derivative.

(i) Fix p ∈ Rn.

(ii) The directional derivative in the direction v ∈ Rn is defined to
be

dfp(v) = lim
h→0

1
h

(f(p+ hv)− f(p)) .

(iii) Alternately:

dfp(v) =
d

dt

∣∣∣∣
t=0

f(p+ tv).

(iv) The directional derivative should be regarded as a function from
Rn to Rm.

(d) Recall that a function T : Rn → Rm is linear iff

T (ax+ by) = T (ax) + T (by)

for all a, b ∈ R and x, y ∈ Rn.

(e) f is differentiable at p iff

(i) For each v, the directional derivative dfp(v) exists,

(ii) v → dfp(v) is linear, and

(iii) ∀ε > 0, ∃δ > 0 so that if |w| < δ then∣∣∣∣f(p+ w)− f(p)
|w|

− dfp

(
w

|w|

)∣∣∣∣ < ε.

(f) Dimension 1 revisited: f ′(p) = dfp(1) where 1 is the usual unit vector
in R.

(g) Exercise: Show that if f is differentiable at p, then f is continuous at
p.

(4) Constructing examples of functions that are not differentiable at p.

(a) Without loss of generailty p = 0.

(b) Using polar coordinates:

(i) x = r cos(θ) and y = r sin(θ)

(ii) Consider functions of the form f(r, θ) = rk · g(θ).

(iii) Nota Bene: If k ≥ 2, then ∀v we have df0(v) = 0.

(c) Example: Conditions (i) and (ii) of the definition do not imply (iii):
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(i) Let k = 2 and g(θ) = 1/θ for 0 < θ ≤ 2π.

(ii) Then dfp(v) = 0 for all v and hence dfp is linear.

(iii) Consider f along curve θ = 1
r2 .

(iv) For r > 0 we have f(r, 1/r2) ≡ 1.

(v) But f(0), and hence f is not continuous at 0.

(d) Example: Condition (i) of definition does not imply condition (ii).

(i) f : R2 → R described in polar coordinates by

f(r, θ) = r · g(θ)

where g(θ) = sin(3θ).

(ii) No plane tangent to the graph of f .

(iii) In rectangular coordinates

f(x, y) =
3xy2 + y3

x2 + y2

with f(~0) = 0.

(iv) Verfication that f not differentiable at ~0 = (0, 0):

(A) If df0 were linear, then dfp(x+ y) = dfp(x) + dfp(y) for all
x and y.

(B) Let x = (1, 0) and y = (0, 1).

(C) We have

df0(x) =
d

dt

∣∣∣∣
t=0

f((t, 0)) =
d

dt

∣∣∣∣
t=0

0 = 0,

(D) and

df0(y) =
d

dt

∣∣∣∣
t=0

f((0, t)) =
d

dt

∣∣∣∣
t=0

t = 1,

(E) but

df0(x+ y) =
d

dt

∣∣∣∣
t=0

f((t, t)) =
d

dt

∣∣∣∣
t=0

2t = 2,

(F) Since 2 6= 1 + 0, f is not differentiable at ~0.

(5) MVT is false in higher dimensions, but

(6) Mean value type estimate in all dimensions:

(a) Given T linear, define ||T || = supv 6=0
|T (v)|
|v|

(b) Suppose that ||dfp|| ≤ M for all p along the segment joining a and b,
then |f(b)− f(a)| ≤M · |b− a|

(c) Pf: Apply fun thm of calculus. (In 1-D comes from MVT).
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(7) Partial derivatives and Jacobian matrix

(a) What is practical purpose of condition (b) in the definition of the
derivative? Answer: Want to reduce analysis of functions to linear
algebra.

(b) Let ei is unit vector pointing in direction of positive xi axis. The set
{ei} is called the standard basis.

(c) Choice of basis allows us to express linear transformation T with only
finitely many numbers:

(i) Every vector v can be written uniquely as linear combination of
basis vectors v = a1e1 + · · ·+ anen.

(ii) T linear ⇒ T (v) = a1T (e1) + · · ·+ anT (en).

(iii) If we regard T (ei) as the columns of a matrix A, then T (v) =
A · v.

(d) The matrix associated to dfp is called the Jacobian matrix of f at p.

(e) Partial derivatives

(i) Suppose f : Rn → R. The jth partial derivative at p is

∂jf(p) =
∂f

∂xj
(p) = dfp(ej).

(ii) The (i, j) entry of the Jacobian matrix is the jth partial deriv-
ative of the ith coordinate function. (Jacobian matrix is also
called “matrix of first partials”).

(f) Theorem: If partials ∂if(x) are defined in a ball B(p, r) and are con-
tinuous at p, then f is differentiable at p.

(g) Existence of partials is not enough. Indeed, above we gave an example
of a function such that all directional derivatives existed but function
not differentiable. A partial derivative is just a special directional
derivative.

(8) Chain rule

(a) Suppose f differentiable at p and g differentiable at g(p). Then g ◦ f
differentiable at p and

d(g ◦ f)p = dgg(p) ◦ dfp.

(b) Thus, if A is Jacobian matrix for f at p and B is Jacobian matrix for
g at f(p), then the Jacobian matrix for g ◦ f is B ·A.

1.1. Additional Exercises.

(1) Define f : [0, 1]→ R

f(x) =
{
x2 sin(π/x2), x > 0
0, x = 0.
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(a) Check that f is differentiable at each x ∈ [0, 1] including x = 0.

(b) Show that f is not K-Lipschitz for any K.

(c) Show that lim supx→0 |f ′(x)| =∞.

(2) Let n ∈ N and let t0 ∈ [a, b]. Suppose that the nth derivative f (n) exists
and is identically zero in the interval [a, b] and that 0 = f(t0) = f ′(t0) =
· · · = f (n−1)(t0). Show that f must be idetically zero.

(3) Let dfp be the derivative at p of the differentiable function f : Rn → Rm.
Suppose that ∃C so that |f(x) − f(y)| > C|x − y| for all x, y. Show that
for each p, the linear transformation dfp is an invertible.


