1. The fundamental theorem of calculus

- (1) Classical version
 - (a) If $f:[a,b]\to \mathbb{R}$ is a differentiable function whose derivative is integrable, then

$$\int_a^b f' = f(b) - f(a).$$

- (b) Note: Each side may be regarded as a sum.
 - (i) The left-hand side is a limit of Riemann sums.
 - (ii) The right hand sum is a weighted sum.
- (c) We wish to generalize this formula to higher dimensions.
- (2) Differential forms
 - (a) In what follows I will denote a k-tuple

$$I = (i_1, i_2, \dots, i_k)$$

where $\forall j$ we have $i_j \in \{1, \ldots, n\}$,.

(b) The basic k-form on \mathbb{R}^n associated to I is defined to be

$$dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

(c) A differential k-form is a linear combination (over the ring $C^\infty(\mathbb{R}^d))$ of basic k-forms

$$\sum_{I} f_{I} \cdot dx_{I}.$$

- (d) A differentiable function is called a 0-form.
- (e) We require antisymmetry: $dx_i \wedge dx_j = -dx_j \wedge dx_i$.
- (f) exterior derivative:
 - (i) If f is a function (i.e. a 0-form)

$$df = \sum_{j=1}^d \frac{\partial f}{\partial x_j} dx_j.$$

(ii) If k > 0, then

$$d\left(\sum_{I}f_{I}\cdot dx_{I}\right) = \sum_{I}df_{I}\wedge dx_{I}.$$

- (g) pull-back:
 - (i) Suppose $\phi: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable.

(ii) The *pull-back* of the basic k-form dx_I is

$$\phi^*(dx_I) = d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k}$$

where ϕ_j is the j^{th} coordinate function of ϕ .

(iii) In general

$$\phi^*\left(\sum_I f_I \cdot dx_I\right) = \sum_I (f_I \circ \phi) \cdot \phi^*(dx_I).$$

- (3) Integration of differential *n*-forms on \mathbb{R}^n
 - (a) Orientation
 - (i) Let k = n.
 - (ii) We say that I is *positively oriented* if and only if

$$dx_I = dx_1 \wedge dx_2 \wedge \dots \wedge dx_n.$$

(iii) In other words, I is positively oriented iff the permutation

 $(1,2,\ldots,n)\mapsto (i_1,i_2,\ldots,i_n)$

is even.

- (b) Integration of *n*-forms on \mathbb{R}^n
 - (i) If I is positively oriented, then define

$$\int_{U} f_{I} \cdot dx_{I} = \int_{U} f_{I}$$

where $\int_U f_I$ is Riemann integral over U.

(ii) If I is not positively oriented, then define

$$\int_U \sum_I f_I \cdot dx_I = -\int_U f_I$$

(iii) Extend to be linear:

$$\int_U \sum_I f_I \cdot dx_I = \sum_I \int_U f_I \cdot dx_I$$

- (iv) Note that definition depends on integrability properties of f_I over U. Usually assume that f_I are smooth and the boundary ∂U has content zero (e.g. piecewise smooth).
- (c) Change of variables formula:
 - (i) Let ω be *n*-form.
 - (ii) Let $U, V \subset \mathbb{R}^n$ be open sets with piecewise smooth boundary.
 - (iii) Suppose that $\phi: V \to U$ satisfies

(A) ϕ is bijection

- (B) $d\phi_p$ is invertible for every $p \in V$,
- (C) ϕ is orientation preserving: $\forall p$, we have $\det(d\phi_p) > 0$,
- (iv) Then for each differential *n*-form ω

$$\int_V \phi^*(\omega) = \int_U \omega.$$

- (4) Integrating differential forms over parametrized submanifolds.
 - (a) Let $U \subset \mathbb{R}^k$.
 - (b) Let $\gamma: U \to \mathbb{R}^n$ be an injective immersion.
 - (c) The image $\gamma(U)$ is a parametrized k-dimensional (immersed) submanifold of \mathbb{R}^n .
 - (d) Let ω be a differential k-form on \mathbb{R}^n .
 - (e) *Definition:* The integral of ω over the parameterization γ is defined to be

$$\int_{\gamma} \omega := \int_{U} \gamma^*(\omega).$$

- (f) Orientation
 - (i) Suppose that $\alpha : A \to \mathbb{R}^n$ and $\beta : B \to \mathbb{R}^n$ both parameterize $M \subset \mathbb{R}^n$.
 - (ii) We say that α and β determine the same orientation on M iff $\alpha \circ \beta^{-1}$ is orientation preserving.
 - (iii) Equivalence:
 - (A) Write $\alpha \sim \beta$ if two injective immersions determine the same orientation.
 - (B) This is an equivalence relation on parameterizations of M.
 - (C) *Exercise:* Show that there are exactly two equivalence classes.
 - (D) Each equivalence class is called an *orientation* of the parameterized submanifold M.
 - (iv) If $\alpha \sim \beta$, then

$$\int_{\alpha} \omega = \int_{\beta} \omega.$$

(v) Otherwise

$$\int_{\alpha}\omega \ = \ -\int_{\beta}\omega.$$

The image $\gamma(U)$ is a parametrized k-dimensional (immersed) submanifold of \mathbb{R}^n .

- (g) Definition of intergral over oriented submanifold.
 - (i) Let M be an oriented parameterized submanifold.
 - (ii) Let γ belong to the orientation class.
 - (iii) Define

4

$$\int_M \omega = \int_\gamma \omega.$$

- (5) The modern Stokes theorem
 - (a) open subsets of \mathbb{R}^n
 - (i) Let U be an open subset of \mathbb{R}^n with n-1 dimensional boundary ∂U .
 - (ii) Let $n: \partial U \to \mathbb{R}^n$ be the outward normal vector field.
 - (iii) Suppose that $\gamma: V \to \mathbb{R}^n$ be a parameterization of ∂U .
 - (iv) A parameterization belongs to the *outward orientation* iff for each $p \in V$, the matrix

 $[n(p), d\phi_p(e_1), d\phi_p(e_2), \cdots, d\phi(e_{n-1})].$

has positive determinant.

(v) Stokes theorem: For each n-1 form ω

$$\int_{\partial U} \omega = \int_{U} d\omega$$

where ∂U has its outward normal orientation.

- (b) Parameterized manifolds with boundary.
 - (i) Let $M \subset \mathbb{R}^n$ be an oriented parameterized k-dimensional submanifold with k-1-dimensional parameterized boundary ∂M .
 - (ii) Let $\gamma: U \to \mathbb{R}^n$ be a parameterization of M in the orientation class of M.
 - (iii) A parameterization $\alpha : V \to \mathbb{R}^n$ of ∂U is compatible with the orientation of M if and only if $\gamma^{-1} \circ \alpha$ lies in the outward normal orientation class of ∂U .
 - (iv) Associated to the orientation class of M, there exists a unique compatible orientation class of ∂M .
 - (v) Stokes Theorem: For each n-1 form ω

$$\int_{\partial M} \omega = \int_M d\omega$$

where ∂M has the orientation induced by M.

- (6) The module of differential k-forms.
 - (a) Let Ω^k denote the differential k-forms.
 - (b) algebraic structure

- (i) addition
- (ii) 0 is additive identity
- (iii) multiplication by smooth functions
- (iv) wedge product (exterior algebra)
- (c) basis and dimension
 - (i) Note: If ω is a k-form on \mathbb{R}^n and k > n, then $\omega = 0$.
 - (ii) Assume $k \leq n$.
 - (iii) $I = (i_1, i_2, \dots, i_k)$ is said to be *ordered* if and only if $r < s \Rightarrow i_r < i_s$.
 - (iv) *Exercise:* The number of ordered k-tuples in $\{1, \ldots, n\}^k$ is $\binom{n}{k}$.
 - (v) For each k-form ω and ordered k-tuple I there exists a unique function f_I so that

$$\omega = \sum_{I \text{ ordered}} f_I \cdot dx_I$$

- (vi) Ω^k is an $\binom{n}{k}$ -dimensional module over the ring of smooth functions.
- (7) Functions and differential forms
 - (a) Let $C^{\infty} = C^{\infty}(U)$ denote the space of smooth functions on U.
 - (b) 0-forms are functions: $\Omega^0 = C^{\infty}$
 - (c) ω is *n*-form iff $\omega = f \cdot dx_1 \wedge \cdots \wedge dx_n$.
 - (d) Module isomorphism $\Phi_n: \Omega^n \to C^\infty$ defined by

$$\Phi_n(f \cdot dx_1 \wedge \dots \wedge dx_n) = f.$$

- (8) Vector fields and differential forms
 - (a) Let $U \subset \mathbb{R}^n$.
 - (b) A vector field X on U is a function $X: U \to \mathbb{R}^n$.
 - (c) Let \mathcal{V} be the set of vector fields on U.
 - (i) addition
 - (ii) multiplication by smooth functions $\mathbb{R}^n \to \mathbb{R}$.
 - (iii) Let e_i denote the the i^{th} standard vector field.
 - (iv) Standard vectors fields provide basis over smooth functions.
 - (d) Module isomorphism $\Phi_1: \Omega^1 \to \mathcal{V}$ defined by

$$\Phi_1\left(\sum_i f_i \ dx_i\right) = \sum_i f_i \cdot e_i.$$

- (e) Module isomorphism Φ_{n-1}
 - (i) For each j, let I_j be the n-1-tuple $(1, 2, \dots, j-1, j+1, \dots, n)$.
 - (ii) For each n 1-form ω and each $j \in \{1, ..., n\}$ there exists unique $f_j \in C^{\infty}$ such that

$$\omega = \sum_{j} f_j \cdot dx_{I_j}.$$

(iii) Define $\Phi_{n-1}: \Omega^{n-1} \to \mathcal{V}$ by

$$\Phi_n\left(\sum_j f_j \cdot dx_{I_j}\right) = \sum_j f_j \cdot e_j.$$

(iv) flux form.

- (9) div, grad, curl, and the exterior derivative
 - (a) The classical integration theorems—Greens, Stokes, divergence—follow from modern Stokes theorem.
 - (b) Need only reinterpret the following operators in terms of d.
 - (c) gradient
 - (i) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function.
 - (ii) The gradient of f is the vector field

$$\operatorname{grad}(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cdot e_i$$

(iii)

$$\operatorname{grad}(f) = \Phi_1(df).$$

- (d) divergence
 - (i) Let F be a vector field on \mathbb{R}^n .
 - (ii) The divergence of F is the function

$$\operatorname{div}(F) = \sum_{i} \frac{\partial F_i}{\partial x_i}.$$

(iii)

$$\operatorname{div}\left(\Phi_{n-1}(\omega)\right) = \Phi_n(d\omega).$$

(e) curl

(i) $n = 3 \Leftrightarrow n - 1 = 2$ (ii) $\operatorname{curl}(F) = \Phi_2(d(\Phi_1^{-1}(F))).$