
1. Integration

(1) The Riemann integral over a rectangle

(a) Rectangles

(i) A subset of R is connected if and only if it is an interval.

(ii) A rectangle R in Rd is a product of closed intervals:

R = [a1, b1]× · · · × [ad, bd].

(iii) The volume, Vol(R), of the rectangle is defined to be

(b1 − a1) · (b2 − a2) · · · (bd − ad).

(b) A finite partition P of a rectangle U ⊂ Rd is a finite collection of
rectangles such that

(i) U =
⋃
R∈P R, and

(ii) interior(R) ∩ interior(R′) = ∅ unless R = R′.

(c) Let f : Rd → R.

(d) Upper sums

(i) Let M(f,R) = sup{f(x) | x ∈ R}.

(ii) The upper sum of f with respect to P is

Uf(P ) =
∑
R∈P

M(f,R) ·Vol(I).

(e) Lower sums

(i) Let m(f,R) = inf{f(x) | x ∈ R}.

(ii) The lower sum of f with respect to P is

Lf(P ) =
∑
R∈P

m(f,R) ·Vol(I).

(f) Monotonicity with resepect to refinement:

(i) We say that P ′ is a refinement of P iff every rectangle in P is
a finite union of rectangles in P ′. We write P ′ > P.

(ii) If P ′ > P, then

(A) Uf(P ′) ≤ Uf(P)

(B) Lf(P ′) ≥ Lf(P)

(g) Exercise: Let P and Q be two partitions of a rectangle U .

(i) Show that there exists a partiton S of U such that S > P and
S > Q.

(ii) Show that Lf(P) ≤ Uf(Q).
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(h) Definition:

(i) We say that f is Riemann integrable over a closed rectangle U
if and only if for every ε > 0, there exists a finite partition P
so that

|Uf(P) − Lf(P)| < ε.

(ii) By combining this with the exercise above, we find that

−∞ < inf
P

Lf(P) = sup
P

Uf(P) < ∞.

(iii) We call this number the Riemann integral of f over U and
denote it by ∫

U

f.

(i) Observation: If f is not bounded on U , then f is not Riemann inte-
grable over U .

(j) Theorem: If f is continuous on a closed rectangle U , then f is Rie-
mann integrable over U .

(k) Exercise: Show that the function f defined by

f(x) =
{

1 if x ∈ Q
0 if x /∈ Q

is not integrable.

(l) Example:

(i) If x is a rational number, define

q(x) = inf {q ∈ N | p/q = x}.

That is, q(x) is the denominator of the reduced form of x.

(ii) For x ∈ [0, 1], define

f(x) =
{

1/q(x) if x ∈ Q
0 if x /∈ Q

(iii) Claim: f is integrable over [0, 1].

(iv) First note that Lf(P) = 0 for all partitions P, and hence it
suffices to find a partition P so that Uf(P) < ε.

(v) Given ε > 0, choose qε ∈ N so that 1/qε < ε/2.

(vi) Note that the set

F = {x ∈ Q ∩ [0, 1] | q(x) ≤ qε}

is finite. (e.g. a discrete subset of a compact space is finite).

(vii) Since F is finite, it is compact, and hence the infimum

δF = inf {|x− x′| | x, x′ ∈ F with x 6= x′ }
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is achieved, and particular is positive. (Every point in F is at
least δF distant from every other point in F .)

(viii) Let n be the number of elements in F .

(ix) For each x ∈ F , let Rx be the closed interval centered at x with

Vol(Rx) < min
{ ε

2n
, δF

}
.

(x) Note that∑
x∈F

M(f,Rx) ·Vol(Rx) ≤ ε

2n
·
∑
x∈F

1
q(x)

≤ ε

2n
·
∑
x∈F

1 ≤ ε/2.

(xi) The complement of
⋃
x∈F Rx is a finite union of disjoint inter-

vals. Let R1, . . . , Rm denote the closures of these intervals.

(xii) Since Ri ∩Rj = ∅ for i 6= j and each Ri ⊂ [0, 1], we have
m∑
i=1

Vol(Ri) ≤ Vol([0, 1]) = 1.

(xiii) Thus,
m∑
i=1

M(f,Ri) ·Vol(Ri) ≤
1
qε
·
m∑
i=1

Vol(Ri) ≤ ε/2.

(xiv) Let

P = {R1, . . . , Rm} ∪ {Rx | x ∈ F}.

(2) Content zero and discontinuous functions

(a) Let A ⊂ Rd.

(b) We say that A has content zero if and only if for each ε > 0, ∃ a finite
collection F of rectangles so that

A ⊂
⋃
R∈F

R,

and ∑
R∈F

Vol(R) < ε.

(c) Exercise: Show every countable subset of Rd has content zero.

(d) Let Dis(f) denote the set of discontinuities of a function f : U → R.

(e) Theorem: If Dis(f) has content zero, then f is Riemann integrable
on the rectangle U .

(3) Riemann integrability on bounded domains.

(a) Let Ω ⊂ Rd be a bounded subset of Rd.

(b) ⇒ ∃ rectangle U so that Ω ⊂ U .
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(c) Define the characteristic function χΩ : Rd → R of Ω by

χΩ(x) =
{

1 if x ∈ Ω
0 if x /∈ Ω

(d) Definition: f is Riemann integrable on Ω ⇔ χΩ · f is integrable over
U .

(e) If f integrable over Ω then define∫
Ω

f :=
∫
U

χΩ · f.

(f) Integrability of continuous functions on bounded domains.

(i) Let ∂Ω = Ω \ Interior(Ω). This is called the boundary of Ω.

(ii) Proposition: If ∂Ω has content zero, then each continuous func-
tion on Ω is integrable.

(A) Dis(χΩ) = ∂Ω.

(B) If f continuous, then

Dis(χΩ · f) = Dis(χΩ).

(C) Proposition follows from previous theorem.

(4) Integrability in general.

(a) Allow for infinite partitions P of Rd.

(b) Note that every partition of Rd is countable.

(c) Riemann sums become infinite sums. How to order rectangles?

(d) Order of summation:

(i) Let C ⊂ R be a countable set.

(ii) If C ⊂ [0,∞) or C ⊂ (−∞, 0], then the sum∑
x∈C

x

does not depend on an ordering of C.

(e) Definition for functions of one sign

(i) Let f be a nonnegative (or nonpositive) function.

(ii) Upper sums and lower sums are unambiguously defined.

(iii) Definition: f is Riemann integrable over Rd ⇔ if and only if
for every ε > 0, there exists a partition P so that

|Uf(P) − Lf(P)| < ε.

(f) Given f : Rd → R, define the positive part of f

f+(x) =
{
f(x) if f(x) > 0

0 if f(x) ≤ 0 ,
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and define the negative part of f

f−(x) =
{
f(x) if f(x) < 0

0 if f(x) ≥ 0 .

(g) Note that f = f+ + f−, f+ ≥ 0 and f− ≤ 0.

(h) Definition: f is Riemann integrable on Rd ⇔ f+ and f− are inte-
grable. We write∫

Rd

f =
∫

Rd

f+ +
∫

Rd

f−.

(5) Change of variables formula

(a) Let φ : U → Rd have a continuous derivative.

(b) Let f be an integrable function on φ(U).

(c) Then ∫
φ(U)

f =
∫
U

f ◦ φ · |det(dφp)|.

(d) Example: f = 1 gives volume.

(6) Submanifolds and parametrizations

(a) An immersion is a map γ : U ⊂ Rn → Rm such that dγp has full
rank for each p ∈ U .

(b) A parametrized (immersed) n-dimensional sumbmanifold of Rm is
the image of an immersion γ : U ⊂ Rn → Rm.

(c) The function γ is called a parametrization of γ(U).

(d) Example: Implicit functions give parametrizations of level sets.

(e) If g : Rn → Rm then x 7→ (x, g(x)) is parametrization of the graph
of f .

(f) Example: Sphere

(7) Integration on submanifolds with surface measure

(a) Let M be a parametrized submanifold and let γ : U →M = γ(U) be
a parametrixzation. Define∫

M

f dA =
∫
U

f ◦ γ ·
√

det(dγ∗ ◦ dγ) dx.

(b) Change of variables theorem implies that integral is independent of
the parametrization.

(c) Special case: γ parameterizes a curve C.

(i) γ : [a, b]→ Rm

(ii) dγt = γ′(t) is the ‘velocity vector’, a vector tangent to curve.
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(iii) det(dγ∗t ◦ dγt) = |γ′(t)|2

(iv) ∫
C

f ds =
∫ b

a

f ◦ γ · |γ′(t)| dt.

(d) Special case: parametrization of graph.

(i) Example: g : R2 → R and γ(x, y) = (x, y, g(x, y)) then the
Jacobian is  1 0

0 1
∂g
∂x

∂g
∂y


(ii) Thus, det(dγ∗ ◦ dγ) is the determinant of(

1 0 ∂g
∂x

0 1 ∂g
∂y

)
·

 1 0
0 1
∂g
∂x

∂g
∂y


(iii) Computation gives

det(dγ∗ ◦ dγ) =

√
1 +

(
∂g

∂x

)2

+
(
∂g

∂y

)2


