1. Integration

(1) The Riemann integral over a rectangle
(a) Rectangles
(i) A subset of R is connected if and only if it is an interval.
(ii) A rectangle R in R? is a product of closed intervals:

R = [al,bl] X oo X [ad,bd].

(iii) The volume, Vol(R), of the rectangle is defined to be
(b1 —a1) - (ba —az) -+ (bg — aq).
(b) A finite partition P of a rectangle U C R? is a finite collection of
rectangles such that
(i) U=Ugep R, and
(ii) interior(R) N interior(R’) = @ unless R = R'.
(c) Let f:R? — R.
(d) Upper sums
(i) Let M(f,R) =sup{f(z) | = € R}.
(ii) The upper sum of f with respect to P is

Uf(P)=Y_ M(f,R)-Vol(]).

ReP

(e) Lower sums
(i) Let m(f, R) = inf{f(x) | « € R}.
(ii) The lower sum of f with respect to P is

Lf(P)=>_ m(f,R) - Vol(I).

ReP

(f) Monotonicity with resepect to refinement:

(i) We say that P’ is a refinement of P iff every rectangle in P is
a finite union of rectangles in P’. We write P’ > P.

(ii) If P’ > P, then
(A) Uf(P) <UF(P)
(B) Lf(P') = Lf(P)
(g) Fzercise: Let P and Q be two partitions of a rectangle U.

(i) Show that there exists a partiton S of U such that S > P and
s> Q.

(ii) Show that Lf(P) <Uf(Q).



(h) Definition:

(i) We say that f is Riemann integrable over a closed rectangle U
if and only if for every ¢ > 0, there exists a finite partition P
so that

Uf(P) — Lf(P)| < e

(ii) By combining this with the exercise above, we find that

—oo < inf Lf(P) = sup Uf(P) < oo.
P P

(iii) We call this number the Riemann integral of f over U and

denole 1[ by
/l/ .

(i) Observation: If f is not bounded on U, then f is not Riemann inte-
grable over U.

(j) Theorem: If f is continuous on a closed rectangle U, then f is Rie-
mann integrable over U.

(k) Exercise: Show that the function f defined by
_ 1 ifzeQ
@) = { 0 ifzgQ
is not integrable.
(1) Example:
(i) If z is a rational number, define
q(z) = inf {g e N|p/qg=uz}.
That is, ¢(x) is the denominator of the reduced form of x.
(ii) For z € [0,1], define
_ [ V(@) ifzeQ
J(@) = { 0 ifz¢Q
(iii) Claim: f is integrable over [0, 1].

(iv) First note that Lf(P) = 0 for all partitions P, and hence it
suffices to find a partition P so that U f(P) < e.

(v) Given € > 0, choose g, € N so that 1/g. < €/2.
(vi) Note that the set
F = {2eQn[01]] ¢() < g}
is finite. (e.g. a discrete subset of a compact space is finite).
(vii) Since F is finite, it is compact, and hence the infimum

dp = inf{jz —2'| | x,2" € F with x # 2’}
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is achieved, and particular is positive. (Every point in F is at
least d distant from every other point in F.)
(viii) Let n be the number of elements in F.

(ix) For each x € F, let R, be the closed interval centered at x with

Vol(R,) < min {%,51:} .

(x) Note that

1
3" M(f.R.) - Vol(R )g%- mgi-Zlge/z

zEF zeF

(xi) The complement of |, R, is a finite union of disjoint inter-
vals. Let Ry,..., R,, denote the closures of these intervals.

(xii) Since R; N R; = () for i # j and each R; C [0, 1], we have

iVol(Ri) < Vol([0,1]) = 1.

(xiii) Thus,
ZM f,Ry)-Vol(R;) < — ZVOI D < €)/2.
qe 1=1

(xiv) Let
= {Ry,...,Rn} U{R; | x € F}.

(2) Content zero and discontinuous functions
(a) Let A C R%

(b) We say that A has content zero if and only if for each € > 0, 3 a finite
collection F' of rectangles so that

Ac |Jr

ReF

> Vol(R) < e

ReF

and

(c) Ezercise: Show every countable subset of R¢ has content zero.
(d) Let Dis(f) denote the set of discontinuities of a function f : U — R.

(e) Theorem: If Dis(f) has content zero, then f is Riemann integrable
on the rectangle U.

(3) Riemann integrability on bounded domains.
(a) Let Q C R? be a bounded subset of R%.
(b) = 3Jrectangle U so that Q C U.



(c) Define the characteristic function xq : R? — R of Q by

(@) = 1 ifzeQ
X = 10 ifz¢gQ

(d) Definition: f is Riemann integrable on Q < xgq - f is integrable over
U.

(e) If f integrable over €2 then define

/Qf = /UxQ~f-

(f) Integrability of continuous functions on bounded domains.
(i) Let 0Q = Q \ Interior(£2). This is called the boundary of €.

(ii) Proposition: If 92 has content zero, then each continuous func-
tion on {2 is integrable.

(A) Dis(xq) = 0.
(B) If f continuous, then
Dis(xq - f) = Dis(xa).
(C) Proposition follows from previous theorem.
(4) Integrability in general.
(a) Allow for infinite partitions P of R<.
(b) Note that every partition of R? is countable.
(¢) Riemann sums become infinite sums. How to order rectangles?
(d) Order of summation:
(i) Let C' C R be a countable set.
(if) If C C [0,00) or C C (—o0, 0], then the sum
D@
zeC
does not depend on an ordering of C.

(e) Definition for functions of one sign
(i) Let f be a nonnegative (or nonpositive) function.
(ii) Upper sums and lower sums are unambiguously defined.

(iii) Definition: f is Riemann integrable over R? < if and only if
for every € > 0, there exists a partition P so that

Uf(P) = LF(P)| < e

(f) Given f:RY — R, define the positive part of f

flw) it f(z)>0
@) = { 0 if f(z) <0
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and define the negative part of f

_ _ flx) if f(z) <0
C) _{ 0 if f(z)>0

(g) Note that f = f*+ f~, ff>0and f~ <0.

(h) Definition: f is Riemann integrable on R% < f* and f~ are inte-
grable. We write

Jut = Jutt = Jut

(5) Change of variables formula
(a) Let ¢ : U — R? have a continuous derivative.
(b) Let f be an integrable function on ¢(U).
(¢) Then

;= /fo¢~|det(d¢p)l-
o(U) U

(d) Example: f =1 gives volume.
ubmanifolds and parametrizations
(6) Sub ifold dp izati

(a) An immersion is a map v : U C R® — R™ such that dv, has full
rank for each p € U.

(b) A parametrized (immersed) n-dimensional sumbmanifold of R™ is
the image of an immersion v : U C R" — R™.

(c¢) The function « is called a parametrization of (U).
(d) Example: Implicit functions give parametrizations of level sets.
(e) If g : R™ — R™ then = — (z,g(z)) is parametrization of the graph
of f.
(f) Example: Sphere
ntegration on submanifolds with surface measure
7)1 i b ifolds with surf:

(a) Let M be a parametrized submanifold and let v : U — M = v(U) be
a parametrixzation. Define

/fdA = /fo~y~\/det(d’y*od’y) dz.
M U

(b) Change of variables theorem implies that integral is independent of
the parametrization.

(c) Special case: v parameterizes a curve C.
(i) v:[a,b] = R™

(il) dye = 7/(t) is the ‘velocity vector’, a vector tangent to curve.



(ili) det(dy; ody) = v/ (t)[?

(iv)
/Cfds - /:fov-lv’(t)ldt-

(d) Special case: parametrization of graph.

(i) Example: g : R? — R and 7y(x,y) = (2,y,9(x,y)) then the
Jacobian is

1 0
0 1
99 9g
ox Oy

1 0

99
103&;.01
01 3 99 g

(iii) Computation gives

det(dy* ody) = (/1 + @2+ AN
7 V= Jr dy




