1. NUMBERS

- (1) How do we use numbers?
 - (a) To represent solutions to problems.
 - (b) Each new type of number concept is generated to express solution to a new problem.
 - (c) Better if can be manipulatated to solve problems. (e.g. integers can be added and subtracted.)
- (2) Examples:
 - (a) the natural numbers, \mathbb{N} : solutions to counting problem.
 - (b) the rational numbers \mathbb{Q}^+ : solutions to sharing problem.
 - (c) 0 accepted only slowly.
 - (d) the integers \mathbb{Z} : solutions to accounting problem ('in the red')
 - (e) the reals \mathbb{R} : solutions to measuring distances, etc.
- (3) square root of 2
 - (a) $\sqrt{2}$ is the solution to the problem of measuring the length of the diagonal of unit square.
 - (b) Pythogorean thm $\Rightarrow \sqrt{2}$ also a solution to $x^2 = 2$.
 - (c) Hipparchus proved that there were no rational solutions (500 BCE). (also suggested by *Shulba Sutras* in *Vedas* 800-200 BCE).
- (4) divergence of algebra and analysis
 - (a) modern algebra: number fields, ideal class group, local rings (Gauss, Kummer, ...)
 - (b) modern analysis: normed vector spaces and fixed point theorems (Fréchet, Hilbert, Banach, Brouwer, Schauder, ...)
- (5) Babylonian squences
 - (a) Babylonians gave rational approximation of $\sqrt{2}$:
 - (i) Choose r_0 to be a rational number.
 - (ii) Define sequence r_n of rational numbers

$$r_{n+1} = \frac{r_n}{2} + \frac{1}{r_n}.$$

(b) Note that $x^2 - 2 = 0$ if and only if

$$x = \frac{x}{2} + \frac{1}{x}$$

- (c) We say that x is a *fixed point* of the function $g(x) = \frac{x}{2} + \frac{1}{x}$.
- (d) *Exercise:* If x > 0, then x/2 + 1/x > 1.

(e) *Exercise:* Show that each Babylonian sequence satisfies

$$|r_{m+1} - r_m| \leq \frac{1}{2} \cdot |r_m - r_{m-1}|.$$

- (f) *Idea:* r_m 'converges' to a fixed point of g.
- (g) But limit can not be rational by Hipparchus.
- (6) \mathbb{R} as a completion of \mathbb{Q}
 - (a) Arhimedean norm on \mathbb{Q}
 - (i) Define the (Archimedean) norm of a rational number r to be

$$|r| = \begin{cases} r & \text{if } r < 0 \\ -r & \text{if } 0 < r \\ 0 & \text{if } r = 0 \end{cases}$$

- (ii) Triangle inequality: $|r+s| \le |r|+|s|$.
- (b) A sequence r_n of rational numbers is *Cauchy* if and only if $\forall m > 0, \exists N \text{ so that if } i, j > N \text{ then } |r_i r_j| < 1/m.$
- (c) Example: Babylonian sequences
 - (i) Exercise: Each Babylonian sequence is Cauchy. (Hint: Use geometric series and prior exercise.)
 - (ii) If $r_0 \neq r'_0$, then the Babylonian sequences r_n and r'_n are different.
 - (iii) But one can check that

$$|r_n - r'_n| \leq \frac{1}{2} \cdot |r_{n-1} - r'_{n-1}| \leq \cdots \leq \left(\frac{1}{2}\right)^n \cdot |r_0 - r'_0|.$$

- (iv) Thus, r_n and r'_n are 'eventually close'.
- (d) Equivalent Cauchy sequences:
 - (i) Two Cauchy sequences r_n and r'_n are *equivalent* if and only if $\forall m, \exists N$ such that if n > N, then $|r_n r'_n| < 1/m$.
 - (ii) For example, any two Babylonian sequences are equivalent.
 - (iii) Notation: $r_n \sim r'_n$.
 - (iv) Note that \sim is an *equivalence relation*, namely we have
 - (A) $r_n \sim r_n$,
 - (B) $r_n \sim r'_n \Leftrightarrow r'_n \sim r_n$, and
 - (C) $r_n \sim r'_n$ and $r'_n \sim r''_n \Rightarrow r_n \sim r''_n$.
- (e) Definition of real number
 - (i) A *real number* is an equivalence class of Cauchy sequences of rational numbers.¹

¹Given an equivalence relation ~ on a set, one may partition the set into *classes* such that x and y belong to same class iff $x \sim y$.

- (ii) A sequence that belongs an equivalence class is said to *represent* the real number.
- (iii) Notation: Let $[r_n]$ denote the equivalence that contains r_n .
- (iv) The $\sqrt{2}$ is by definition the equivalence of Cauchy sequences that contain the Babylonian sequences.
- (v) *Exercise:* Find another Cauchy sequence that represents $\sqrt{2}$ that's not Babylonian.
- (7) Structure of \mathbb{R}
 - (a) Rationals in the reals.
 - (i) Given $r \in \mathbb{Q}$, the constant sequence $\{r, r, r, r, ...\}$ is Cauchy.
 - (ii) Define map from \mathbb{Q} to \mathbb{R} by

 $r \mapsto [\{r, r, r, r, \dots\}].$

- (iii) *Exercise:* This map is injective (one-to-one).
- (iv) In practice, we do not distinguish between a rational number and its image in the real numbers.
- (b) *Exercise:* Between any two real numbers there exists a rational number (i.e. an image of a rational number).
- (c) Addition, subtraction, multipliation, division.
 - (i) $[r_n] + [s_n] = [r_n + s_n]$
 - (ii) $[r_n] [s_n] = [r_n s_n]$
 - (iii) $[r_n] \cdot [s_n] = [r_n \cdot s_n]$
 - (iv) $[r_n]/[s_n] = [r_n/s_n]$
 - (v) *Exercise:* Show that these operations are well-defined.
- (d) Order.
 - (i) $[r_n] < [r'_n] \Leftrightarrow [r_n] \neq [r'_n]$ and for all *m* there exists *M* such that if n > M, then we have $r_n < r'_n$.
 - (ii) *Exercise:* Show that < is well-defined. In particular, what if we change the respesentatives of the equivalence classes?
 - (iii) *Exercise:* Prove 'trichotomy' for real numbers: Either x = 0, 0 < x, or x < 0.
- (e) Norm.
 - (i) *Exercise:* If r_n is a Cauchy sequence of rationals, then $|r_n|$ is a Cauchy squence of rationals.
 - (ii) Define the norm of $[r_n]$ to be $[|r_n|]$.
 - (iii) If r is rational, then its norm as a real number is the same as its norm as a rational number.

- (iv) *Exercise:* Prove the triangle inequality for real numbers: $|x+y| \le |x| + |y|.$
- (8) Convergence in \mathbb{R} .

4

- (a) A sequence x_n of real numbers *converges* to a real number x iff $\forall m, \exists N$ such that if n > N, then $|x x_n| < 1/m$.
- (b) *Exercise:* Let $x = [r_k]$ and $x_n = [r_{n,k}]$. The sequence x_n converges to x iff $\forall m, \exists N$ such that if k, n > N, then $|r_k r_{n,k}| < 1/m$.
- (c) Theorem: If r_n is a Cauchy sequence (of images) of rational numbers, then r_n converges to $[r_n]$.
 - (i) Given m, choose N so that i, j > N implies $|r_i r_j| < 1/m$.
 - (ii) Apply preceding exercise.
- (9) The completeness of \mathbb{R} .
 - (a) Theorem: Each Cauchy sequence x_n of real numbers converges to a unique real number.
 - (i) $x_n = [r_{n,k}].$
 - (ii) Show that $r_{k,k}$ is Cauchy. ('Diagonalization')
 - (iii) Apply preceding result on Cauchy sequences of rationals.
 - (iv) Show that x_n converges to $[r_{k,k}]$.
 - (b) Converse holds true: If x_n converges to some x, then x_n is Cauchy.
- (10) Theorem: If $|x_{m+1} x_m| \le \frac{1}{2}|x_m x_{m-1}|$, then x_m is Cauchy.
 - (a) Pf: Exercise
 - (b) Can replace $\frac{1}{2}$ by any number $\alpha < 1$.
- (11) Supremum and infimum
 - (a) existence is consequence of order and completeness
 - (b) A real number u is an upper bound for a set $A \subset \mathbb{R}$ iff $u \ge a$ for all $a \in A$.
 - (c) *Theorem:* If a nonempty set A of real numbers has an upper bound, it has a unique least upper bound.
 - (d) The least upper bound is called the *supremum* and is denoted $\sup(A)$.
 - (e) Proof of existence of $\sup(A)$:
 - (i) Inductive algorithm to define Cauchy sequence that defines to sup(A) (via limit)
 - (A) Choose x_0 to be an upper bound and choose y_0 to be a point in A.
 - (B) Let z_0 be midpoint of x_0 and y_0 .
 - (C) If z_0 is upper bound, then choose $x_1 = z_0$ and $y_1 = y_0$

- (D) If z_0 is not upper bound, then choose $x_1 \leq y_0$ to be an upper bound, and choose $y_1 \geq z_0$ to be a point in A.
- (E) Let z_1 be midpoint of x_1 and y_1 .
- (F) Repeat
- (ii) Claim: x_n, y_n , and z_n are Cauchy.
 - (A) Indeed, first note that $|z_{m+1} z_m| \leq \frac{1}{2}|z_m z_{m-1}|$, and thus z_m is a Cauchy sequence by exercise above. Let z be the real number represented $\{z_n\}$.
 - (B) Note that $|z_{m+1}-x_{m+1}| \le |z_{m+1}-z_m|$ and $|z_{m+1}-y_{m+1}| \le |z_{m+1}-z_m|$.
 - (C) *Exercise:* Show that x_m and y_m converge to z.
- (iii) Because each y_m belongs to A and each x_m is an upper bound, z is a least upper bound denoted $\sup(A).(why?)$
- (f) Notation: If A has no upper bound, then we write $\sup(A) = \infty$. We write $\sup(\emptyset) = -\infty$.
- (g) Exercise: $A \subset B \Rightarrow \sup(A) \leq \sup(B)$
- (h) Application: Monotone convergence thm.
 - (i) If $x_n \leq x_{n+1}$ for all n, then x_n converges to $\sup\{x_n\}$.
 - (A) $x_n \leq \sup\{x_n\}$ for all n
 - (B) Given m > 0, if $x_n \le \sup\{x_n\} 1/m$ for all n then $\sup\{x_n\} 1/m < \sup\{x_n\}$ is lower bound. Contradiction! Hence there exists M so that $x_M > \sup\{x_n\} - 1/m$.
 - (C) Monotonicity implies $x_n > \sup\{x_n\} 1/m$ for all n > M.
 - (ii) Generalizes to: If $f : (a,b) \to \mathbb{R}$ monotone increasing function and $t \in (a,b)$, then $f(t-) = \lim_{r \to t_{-}} f(r)$ exists and equals $\sup\{f(r) : r < t\}.$
 - (iii) Discontinuities of increasing functions are of 'jump type'

$$f(r) \le f(t-) \le f(t) \le f(t+) \le f(s)$$

for r < t < s.

- (12) lim sup and lim inf
 - (a) Definition of limsup
 - (i) Let x_n be a sequence of real numbers.
 - (ii) For each n, let $A_n = \{x_k | k \ge n\}$ (sometimes called a 'tail' of the sequence).
 - (iii) *Exercise:* The sequence x_n is Cauchy if and only if

$$\lim_{n \to \infty} \sup \{ |x - y|, x, y \in A_n \} = 0.$$

- (iv) By completeness, $\sup(A_n)$ exists (in the extended real numbers).
- (v) Since $A_{n+1} \subset A_n$, we have $\sup(A_{n+1}) \leq \sup(A_n)$.
- (vi) Thus, by monotone convergence theorem

$$\lim_{n \to \infty} \sup\{x_k | k \ge n\}$$

exists in the extended real numbers.

- (vii) We call this the *limsup* of x_n and denote it by $\limsup_{n\to\infty} x_k$.
- (b) Practical criteria: $x = \limsup x_n$ if and only if
 - (i) $\forall y > x$, the set $\{k \mid x_k > y\}$ is finite, and
 - (ii) $\forall y < x$, the set $\{k \mid x_k > y\}$ is infinite.
- (c) Exercise: Define liminf and find the analogous 'practical criteria'.
- (d) Application: Root test
 - (i) $\limsup |a_n|^{\frac{1}{n}} < 1 \Rightarrow \sum a_n$ converges (absolutely). $\limsup |a_n|^{\frac{1}{n}} > 1 \Rightarrow \sum a_n$ diverges.
 - (ii) Convergence proof using practical criteria:
 - (A) Let y lie strictly between $\limsup |a_n|^{\frac{1}{n}}$ and 1.
 - (B) $\exists M \text{ so that } n > M \Rightarrow |a_n| < y^n$.
 - (C) Thus, $\sum_{n>M} |a_n| < \sum_{n>M} y^n < \infty$ since geometric series converge for y < 1.
 - (iii) Divergence proof using practical criteria:
 - (A) $\forall M, \exists n > M \text{ so that } a_n > 1$
 - (B) Thus, $\sum_{n>M} |a_n| > \sum_{n>M} 1 = \infty$.
 - (iv) *Exercise:* Show that

 $\liminf \frac{a_{n+1}}{a_n} \leq \liminf |a_n|^{\frac{1}{n}} \leq \limsup |a_n|^{\frac{1}{n}} \leq \limsup \frac{a_{n+1}}{a_n}.$

(This implies that the ratio test can be regarded as a consequence of the root test.)

(13) Countability.

- (a) Set A is *countable* iff there exists an injection $f : A \to \mathbb{N}$.
- (b) *Exercise:* Show that B is countable iff \exists surjection $g : \mathbb{N} \to B$.
- (c) *Exercise:* Show that the union of two countable sets is countable. Show that \mathbb{Z} is countable.
- (d) *Proposition:* The product of two countable sets is countable.
 - (i) It suffices to show that $\mathbb{N} \times \mathbb{N}$ is countable (why?).
 - (ii) For each $n \in \mathbb{N}$, the set $\{(k_1, k_2) \mid k_1 + k_2 = n\}$ has n elements.

(iii) Given $\mathbf{k} = (k_1, k_2) \in \mathbb{N} \times \mathbb{N}, \exists$ unique $n_{\mathbf{k}} \in \mathbb{N}$ such that

$$\sum_{n=1}^{n_{\mathbf{k}}} n < k_1 + k_2 \leq \sum_{n=1}^{n_{\mathbf{k}}+1} n.$$

- (iv) Define $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by setting $f(k_1, k_2) = n_{\mathbf{k}}$.
- (v) Show that f is injective.
- (e) \mathbb{Q} is countable.
 - (i) By above $\mathbb{N} \times \mathbb{Z}$ is countable.
 - (ii) Define a surjective map from $\mathbb{N} \times \mathbb{Z}$ onto \mathbb{Q} .
- (f) *Exercise:* If $f : \mathbb{N} \to \mathbb{N}$ is injective, then $\lim_{n \to \infty} f(n) = \infty$.
- (g) \mathbb{R} is not a countable set (Cantor's argument)
 - (i) Suppose to contrary that \exists a surjection $f : \mathbb{N} \to \mathbb{R}$.
 - (ii) For each n, choose a Cauchy sequence $r_{n,k}$ of rationals that represents f(n).
 - (iii) Since f is surjective, $\forall j \in \mathbb{N}, \exists n(j) \in N$ such that f(n(j)) = j.
 - (iv) If $j \neq j'$, then $n(j) \neq n(j')$.
 - (v) Exercise $\Rightarrow \lim_{j \to \infty} n(j) = \infty$.
 - (vi) Show that $r_{n(j),j}$ is Cauchy.
 - (vii) But $r_{n(j),j} = j$.
- (h) Application: An increasing function $g: \mathbb{R} \to \mathbb{R}$ has countably many discontinuities.
 - (i) Let Dis(g) be the discontinuities of g.
 - (ii) For $t \in \text{Dis}(g)$, define the open interval

$$I(t) = \left(\lim_{s \to t^-} g(s), \lim_{s \to t^+} g(s)\right).$$

- (iii) g increasing \Rightarrow if $t \neq t'$ then I(t) are I(t') disjoint.
- (iv) Each interval I(t) contains a rational number r(t).
- (v) The map $r : \text{Dis}(g) \to \mathbb{Q}$ is injective.
- (i) Nota Bene: \mathbb{R} contains countable dense set, namely \mathbb{Q} .

2. Additional exercises

- (1) Let g(x) = 1/(1+1/x). Show that g has a fixed point in the interval [0, 1]. What is the value of the fixed point?
- (2) Let a_n be the Fibonacci sequence: $a_1 = 1$ and $a_{n+1} = a_n + a_{n-1}$ for all n.

- (a) Show that $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$.
- (b) Show that the partial sums of $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converge.
- (3) Let $a_1 \ge 2$, and let $a_{n+1} = \sqrt{2+a_n}$. Show that a_n is monotone and compute the limit.
- (4) Let a_n be a sequence of real numbers. Show that for each natural number m we have

$$\limsup_{k \to \infty} |a_k|^{\frac{1}{k}} \leq \limsup_{k \to \infty} |a_{k+m}|^{\frac{1}{k}}.$$