1. NUMBERS

(1) How do we use numbers?
(a) To represent solutions to problems.

(b) Each new type of number concept is generated to express solution to
a new problem.

(c) Better if can be manipulatated to solve problems. (e.g. integers can
be added and subtracted.)

(2) Examples:
(a) the natural numbers, N: solutions to counting problem.
(b) the rational numbers Q*: solutions to sharing problem.
(¢) 0 accepted only slowly.
(d) the integers Z: solutions to accounting problem (‘in the red’)
(e) the reals R: solutions to measuring distances, etc.
(3) square root of 2

(a) V/2 is the solution to the problem of measuring the length of the diag-
onal of unit square.

(b) Pythogorean thm = /2 also a solution to x2 = 2.

¢ ipparchus proved that there were no rational solutions .
Hi h d that th ional soluti 500 BCE
(also suggested by Shulba Sutras in Vedas 800-200 BCE).

(4) divergence of algebra and analysis

(a) modern algebra: number fields, ideal class group, local rings (Gauss,
Kummer, ...)

(b) modern analysis: normed vector spaces and fixed point theorems (Fréchet,
Hilbert, Banach, Brouwer, Schauder, ...)

(5) Babylonian squences
(a) Babylonians gave rational approximation of v/2:
(i) Choose ry to be a rational number.

(ii) Define sequence r,, of rational numbers

T 1
T =— 4+ —.
n+1 2 + ,r‘n

(b) Note that 22 — 2 = 0 if and only if

$+1
r =—+—.
2

8=

(c) We say that x is a fized point of the function g(z) = § +
(d) FEzercise: If x > 0, then z/2 + 1/x > 1.
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(e) Exercise: Show that each Babylonian sequence satisfies
‘Tm+l - Tm' § 5 : |rm - rm—1|~

(f) Idea: ry, ‘converges’ to a fixed point of g.
(g) But limit can not be rational by Hipparchus.
(6) R as a completion of Q

(a) Arhimedean norm on Q

(i) Define the (Archimedean) norm of a rational number 7 to be

r ifr<0
Ir| = —r fo<r
0 ifr=0

(ii) Triangle inequality: |r + s| < |r| +|s|.

(b) A sequence 7, of rational numbers is Cauchy if and only if
Vm > 0, 3N so that if ¢, j > N then |r; —r;| < 1/m.

(¢) Example: Babylonian sequences

(i) Ezercise: Each Babylonian sequence is Cauchy.
(Hint: Use geometric series and prior exercise.)

(ii) If ro # ry, then the Babylonian sequences r,, and 7/, are different.
(iii) But one can check that

1 1\"
A AN T € R

(iv) Thus, r,and r), are ‘eventually close’.
(d) Equivalent Cauchy sequences:

(i) Two Cauchy sequences r,, and 7/, are equivalent if and only if
¥Ym, 3N such that if n > N, then |r, — 7| < 1/m.

(ii) For example, any two Babylonian sequences are equivalent.
(iil) Notation: v ~ 77
(iv) Note that ~ is an equivalence relation, namely we have
(A) T'n ~ Tn,
(B) rop ~rl, &1l ~r,, and
(C) rp~rl and 7], ~ 1l =1y ~ 1l
(e) Definition of real number

(i) A real number is an equivalence class of Cauchy sequences of
rational numbers.*

LGiven an equivalence relation ~ on a set, one may partition the set into classes such that x
and y belong to same class iff z ~ y.



(ii) A sequence that belongs an equivalence class is said to represent
the real number.

(iii) Notation: Let [r,] denote the equivalence that contains r,.

(iv) The v/2 is by definition the equivalence of Cauchy sequences that
contain the Babylonian sequences.

(v) Ezercise: Find another Cauchy sequence that represents /2
that’s not Babylonian.

(7) Structure of R
(a) Rationals in the reals.
(i) Given r € Q, the constant sequence {r,r,r,r,...} is Cauchy.
(ii) Define map from Q to R by

ro— [{r,rror, .}

(iii) Ezercise: This map is injective (one-to-one).

(iv) In practice, we do not distinguish between a rational number
and its image in the real numbers.

(b) Exercise: Between any two real numbers there exists a rational number
(i.e. an image of a rational number).

(¢) Addition, subtraction, multipliation, division.

(i) [ra] + [sn] = [rn + sn]

(i) [ra] = [sn] = [rn — sn]

(iif) [rn] - [sn] = [rn - 50
[n]

(v) [ral/[sn] = [rn/sn]
(v) Ezercise: Show that these operations are well-defined.
(d) Order.
(1) [rn] < [rh) < [rn] # [r},] and for all m there exists M such that

n n

if n > M, then we have r,, < r/,.

(ii) Ewercise: Show that < is well-defined. In particular, what if we
change the respesentatives of the equivalence classes?

(iii) Ezercise: Prove ‘trichotomy’ for real numbers: Either x = 0,
O<z, orz<O.

(e) Norm.

(i) Ezercise: If ry, is a Cauchy sequence of rationals, then |r,| is a
Cauchy squence of rationals.

(ii) Define the norm of [r,] to be [|ry]]-

(iii) If r is rational, then its norm as a real number is the same as its
norm as a rational number.



(iv) Ezercise: Prove the triangle inequality for real numbers:
|z +y| <[] + [yl.

(8) Convergence in R.

(a) A sequence x,, of real numbers converges to a real number z iff
V¥m, 3N such that if n > N, then |z — z,| < 1/m.

(b) Ezercise: Let = [ry] and x,, = [ry, ). The sequence z,, converges to
z iff Ym, 3N such that if k,n > N, then |ry —ry, 1| < 1/m.

(¢) Theorem: If r,, is a Cauchy sequence (of images) of rational numbers,
then 7, converges to [ry].

(i) Given m, choose N so that i, j > N implies |r; — ;| < 1/m.
(ii) Apply preceding exercise.
(9) The completeness of R.

(a) Theorem: Each Cauchy sequence z,, of real numbers converges to a
unique real number.

(i) @n = [rnk)-
ii ow that 7 1 is Cauchy. (‘Diagonalization
ii) Show that 7 5 is Cauchy. (‘Di lization’
iii) Apply preceding result on Cauchy sequences of rationals.
iii) Appl ding 1 Cauch f rational
iv ow that z, converges to [y i].
iv) Show that to [,
(b) Converse holds true: If x,, converges to some z, then z,, is Cauchy.
(10) Theorem: If [T 41 — T| < 5|Tm — Tpy—1], then p, is Cauchy.
(a) Pf: Exercise
(b) Can replace 2 by any number a < 1.
upremum and infimum
(11) Sup d infi
a) existence is consequence of order and completeness
ist i f ord d let

(b) A real number u is an upper bound for a set A C R iff u > a for all
a € A

(¢c) Theorem: If a nonempty set A of real numbers has an upper bound,
it has a unique least upper bound.

(d) The least upper bound is called the supremum and is denoted sup(A).
(e) Proof of existence of sup(A):

(i) Inductive algorithm to define Cauchy sequence that defines to
sup(A) (via limit)

(A) Choose zp to be an upper bound and choose yy to be a
point in A.

(B) Let zp be midpoint of xy and yo.

(C) If 2z is upper bound, then choose 1 = zp and y1 = yo
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(D) If 2 is not upper bound, then choose z1 < yg to be an
upper bound, and choose y; > zy to be a point in A.
(E) Let z; be midpoint of z1 and y;.
(F) Repeat
(ii) Claim: x,, Y, and z, are Cauchy.

(A) Indeed, first note that |z;,11 — 2m| < %|zm — Zm-1/|, and
thus z,, is a Cauchy sequence by exercise above. Let z be
the real number represented {z,}.

(B) Note that |zm4+1—Tm+1| < |2m+1—2m| and |2m41 —Ym+1| <
|2m+1 — Zm]-

(C) E=zxercise: Show that x,, and y,, converge to z.

(iii) Because each y,, belongs to A and each x,, is an upper bound,
z is a least upper bound denoted sup(A).(why?)

(f) Notation: If A has no upper bound, then we write sup(A) = co. We
write sup(f)) = —oo.

(g) Ezercise: A C B = sup(A) < sup(B)
(h) Application: Monotone convergence thm.
(i) If z,, < xp41 for all n, then x,, converges to sup{z,}.
(A) z, <sup{x,} for all n

(B) Given m > 0, if z, < sup{z,} — 1/m for all n then
sup{x,} — 1/m < sup{x,} is lower bound. Contradiction!
Hence there exists M so that zp; > sup{z,} — 1/m.

(C) Monotonicity implies x,, > sup{z,} — 1/m for all n > M.

(ii) Generalizes to: If f : (a,b) — R monotone increasing function
and t € (a,b), then f(t—) = lim,_s;_ f(r) exists and equals

sup{f(r) : r < t}.
(iii) Discontinuities of increasing functions are of ‘jump type’
flr) < f(t=) < f(t) < ft+) < F(s)
forr <t<s.
(12) limsup and lim inf
(a) Definition of limsup
(i) Let z,, be a sequence of real numbers.

(ii) For each n, let A,, = {zx| k > n}
(sometimes called a ‘tail’ of the sequence).

(iii) Ezxercise: The sequence z,, is Cauchy if and only if

lim sup {|z—vy|, z,y € 4,} = 0.
n—oo



(iv) By completeness, sup(A,,) exists (in the extended real numbers).
(v) Since A, 11 C A, we have sup(A,+1) < sup(A4y).

(vi) Thus, by monotone convergence theorem

lim sup{zk| k > n}
n—oo
exists in the extended real numbers.
(vii) We call this the limsup of x,, and denote it by limsup,,_, . k.
(b) Practical criteria: x = lim sup z,, if and only if
(i) Yy > x, the set {k | 1 > y} is finite, and
(ii) Yy < @, the set {k | xx > y} is infinite.
(c) Exercise: Define liminf and find the analogous ‘practical criteria’.

(d) Application: Root test

(i) limsup |ap|® < 1= 3 a, converges (absolutely).
limsup |a,|= > 1= a, diverges.

(ii) Convergence proof using practical criteria:
(A) Let y lie strictly between limsup |a, |+ and 1.
(B) 3M so that n > M = |a,| < y".

(C) Thus, >, < lan] < 3,50 y™ < 00 since geometric series
converge for y < 1.

(iii) Divergence proof using practical criteria:
(A) VM, 3n > M so that a,, > 1
(B) Thus, > o aslan] >3, 1= 00.
(iv) Ezercise: Show that

. . Ap+1
lim inf ——
an

< liminf \an\% < limsup |an|% < lim sup Gnt1

n

(This implies that the ratio test can be regarded as a consequence
of the root test.)

(13) Countability.
(a) Set A is countable iff there exists an injection f: A — N.
(b) Exercise: Show that B is countable iff 3 surjection g : N — B.

(¢) FEzercise: Show that the union of two countable sets is countable. Show
that Z is countable.

(d) Proposition: The product of two countable sets is countable.
(i) It suffices to show that N x N is countable (why?).
(ii) For each n € N, the set {(k1,k2) | k1 + k2 = n} has n elements.



(iii) Given k = (k1,k2) € N x N, 3 unique ny € N such that

nk+1

in<k1+k2§2n.
n=1 n=1

(iv) Define f : N x N — N by setting f(k1, k2) = nik.
(v) Show that f is injective.
(e) Q is countable.
(i) By above N x Z is countable.
(ii) Define a surjective map from N x Z onto Q.
(f) Ezercise: If f : N — N is injective, then lim,, .o f(n) = oco.
(g) R is not a countable set (Cantor’s argument)
(i) Suppose to contrary that 3 a surjection f: N — R.

(ii) For each n, choose a Cauchy sequence 7, ) of rationals that
represents f(n).

(iii) Since f is surjective, Vj € N, In(j) € N such that f(n(j)) = j.

(iv) 1f j # 7', then n(j) # n(j").

(v) Exercise = lim;_.o n(j) = 0.

(vi) Show that r,;) ; is Cauchy.

(vii) But ry(;),; = -

(h) Application: An increasing function g : R — R has countably many
discontinuities.

(i) Let Dis(g) be the discontinuities of g.
(ii) For t € Dis(g), define the open interval

s—t— s—tt

1) = ( Jim ots) Jim o).

(iii) ¢ increasing = if ¢ # ¢’ then I(t) are I(t') disjoint.
(iv) Each interval I(t) contains a rational number r(¢).
(v) The map r : Dis(g) — Q is injective.

(i) Nota Bene: R contains countable dense set, namely Q.

2. ADDITIONAL EXERCISES

(1) Let g(z) =1/(1+1/z). Show that ¢ has a fixed point in the interval [0, 1].
What is the value of the fixed point?

(2) Let a,, be the Fibonacci sequence: a3 = 1 and ap4+1 = a, + ap—1 for all n.



(a) Show that lim, . 22— = 0.

An41

b) Show that the partial sums of 3°°° ; -L converge.
( P g

n=1 a,

(3) Let a; > 2, and let apy1 = v2+a,. Show that a, is monotone and
compute the limit.

(4) Let ay, be a sequence of real numbers. Show that for each natural number
m we have ) )
limsup |ax|F < limsup |agim|*.

k—oo —00



